test_tokenization_bert_japanese.py 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import os
18
import unittest
19
20

from transformers.tokenization_bert import WordpieceTokenizer
21
from transformers.tokenization_bert_japanese import (
Aymeric Augustin's avatar
Aymeric Augustin committed
22
    VOCAB_FILES_NAMES,
23
24
    BertJapaneseTokenizer,
    CharacterTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
25
    MecabTokenizer,
26
)
27

28
from .test_tokenization_common import TokenizerTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
29
from .utils import custom_tokenizers, slow
30
31


32
@custom_tokenizers
33
class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
34
35
36
37
38
39

    tokenizer_class = BertJapaneseTokenizer

    def setUp(self):
        super(BertJapaneseTokenizationTest, self).setUp()

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "こんにちは",
            "こん",
            "にちは",
            "ばんは",
            "##こん",
            "##にちは",
            "##ばんは",
            "世界",
            "##世界",
            "、",
            "##、",
            "。",
            "##。",
        ]
58
59
60
61
62
63
64
65
66

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_tokenizer(self, **kwargs):
        return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self):
67
68
        input_text = "こんにちは、世界。 \nこんばんは、世界。"
        output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。"
69
70
71
72
73
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = self.tokenizer_class(self.vocab_file)

74
75
76
        tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
        self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
77
78
79
80
81

    def test_mecab_tokenizer(self):
        tokenizer = MecabTokenizer()

        self.assertListEqual(
82
83
84
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
        )
85
86
87
88
89

    def test_mecab_tokenizer_lower(self):
        tokenizer = MecabTokenizer(do_lower_case=True)

        self.assertListEqual(
90
91
92
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"],
        )
93
94
95
96
97

    def test_mecab_tokenizer_no_normalize(self):
        tokenizer = MecabTokenizer(normalize_text=False)

        self.assertListEqual(
98
99
100
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"],
        )
101
102

    def test_wordpiece_tokenizer(self):
103
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは" "ばんは", "##こん", "##にちは", "##ばんは"]
104
105
106
107

        vocab = {}
        for (i, token) in enumerate(vocab_tokens):
            vocab[token] = i
108
        tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
109

110
        self.assertListEqual(tokenizer.tokenize(""), [])
111

112
        self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"])
113

114
        self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"])
115

116
        self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"])
117

118
    @slow
119
120
121
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-japanese")

122
123
        text = tokenizer.encode("ありがとう。", add_special_tokens=False)
        text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
124
125
126
127
128
129
130
131
132

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        # 2 is for "[CLS]", 3 is for "[SEP]"
        assert encoded_sentence == [2] + text + [3]
        assert encoded_pair == [2] + text + [3] + text_2 + [3]


133
class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
134
135
136
137
138
139

    tokenizer_class = BertJapaneseTokenizer

    def setUp(self):
        super(BertJapaneseCharacterTokenizationTest, self).setUp()

140
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
141
142
143
144
145
146

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_tokenizer(self, **kwargs):
147
        return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs)
148
149

    def get_input_output_texts(self):
150
151
        input_text = "こんにちは、世界。 \nこんばんは、世界。"
        output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
152
153
154
        return input_text, output_text

    def test_full_tokenizer(self):
155
        tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character")
156

157
158
159
160
161
162
163
        tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
        self.assertListEqual(
            tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]
        )
        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]
        )
164
165

    def test_character_tokenizer(self):
166
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界" "、", "。"]
167
168
169
170

        vocab = {}
        for (i, token) in enumerate(vocab_tokens):
            vocab[token] = i
171
        tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]")
172

173
        self.assertListEqual(tokenizer.tokenize(""), [])
174

175
        self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"])
176

177
        self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"])
178

179
    @slow
180
181
182
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-japanese-char")

183
184
        text = tokenizer.encode("ありがとう。", add_special_tokens=False)
        text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
185
186
187
188
189
190
191

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        # 2 is for "[CLS]", 3 is for "[SEP]"
        assert encoded_sentence == [2] + text + [3]
        assert encoded_pair == [2] + text + [3] + text_2 + [3]