test_tokenization_bert_japanese.py 7.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals

import os
18
import unittest
19
20
21
from io import open

from transformers.tokenization_bert import WordpieceTokenizer
22
from transformers.tokenization_bert_japanese import (
Aymeric Augustin's avatar
Aymeric Augustin committed
23
    VOCAB_FILES_NAMES,
24
25
    BertJapaneseTokenizer,
    CharacterTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
26
    MecabTokenizer,
27
)
28

29
from .test_tokenization_common import TokenizerTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
30
from .utils import custom_tokenizers, slow
31
32


33
@custom_tokenizers
34
class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
35
36
37
38
39
40

    tokenizer_class = BertJapaneseTokenizer

    def setUp(self):
        super(BertJapaneseTokenizationTest, self).setUp()

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "こんにちは",
            "こん",
            "にちは",
            "ばんは",
            "##こん",
            "##にちは",
            "##ばんは",
            "世界",
            "##世界",
            "、",
            "##、",
            "。",
            "##。",
        ]
59
60
61
62
63
64
65
66
67

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_tokenizer(self, **kwargs):
        return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self):
68
69
        input_text = "こんにちは、世界。 \nこんばんは、世界。"
        output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。"
70
71
72
73
74
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = self.tokenizer_class(self.vocab_file)

75
76
77
        tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
        self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
78
79
80
81
82

    def test_mecab_tokenizer(self):
        tokenizer = MecabTokenizer()

        self.assertListEqual(
83
84
85
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
        )
86
87
88
89
90

    def test_mecab_tokenizer_lower(self):
        tokenizer = MecabTokenizer(do_lower_case=True)

        self.assertListEqual(
91
92
93
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"],
        )
94
95
96
97
98

    def test_mecab_tokenizer_no_normalize(self):
        tokenizer = MecabTokenizer(normalize_text=False)

        self.assertListEqual(
99
100
101
            tokenizer.tokenize(" \tアップルストアでiPhone8 が  \n 発売された 。  "),
            ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"],
        )
102
103

    def test_wordpiece_tokenizer(self):
104
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは" "ばんは", "##こん", "##にちは", "##ばんは"]
105
106
107
108

        vocab = {}
        for (i, token) in enumerate(vocab_tokens):
            vocab[token] = i
109
        tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
110

111
        self.assertListEqual(tokenizer.tokenize(""), [])
112

113
        self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"])
114

115
        self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"])
116

117
        self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"])
118

119
    @slow
120
121
122
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-japanese")

123
124
        text = tokenizer.encode("ありがとう。", add_special_tokens=False)
        text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
125
126
127
128
129
130
131
132
133

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        # 2 is for "[CLS]", 3 is for "[SEP]"
        assert encoded_sentence == [2] + text + [3]
        assert encoded_pair == [2] + text + [3] + text_2 + [3]


134
class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
135
136
137
138
139
140

    tokenizer_class = BertJapaneseTokenizer

    def setUp(self):
        super(BertJapaneseCharacterTokenizationTest, self).setUp()

141
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
142
143
144
145
146
147

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_tokenizer(self, **kwargs):
148
        return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs)
149
150

    def get_input_output_texts(self):
151
152
        input_text = "こんにちは、世界。 \nこんばんは、世界。"
        output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
153
154
155
        return input_text, output_text

    def test_full_tokenizer(self):
156
        tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character")
157

158
159
160
161
162
163
164
        tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
        self.assertListEqual(
            tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]
        )
        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]
        )
165
166

    def test_character_tokenizer(self):
167
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界" "、", "。"]
168
169
170
171

        vocab = {}
        for (i, token) in enumerate(vocab_tokens):
            vocab[token] = i
172
        tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]")
173

174
        self.assertListEqual(tokenizer.tokenize(""), [])
175

176
        self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"])
177

178
        self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"])
179

180
    @slow
181
182
183
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("bert-base-japanese-char")

184
185
        text = tokenizer.encode("ありがとう。", add_special_tokens=False)
        text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
186
187
188
189
190
191
192

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        # 2 is for "[CLS]", 3 is for "[SEP]"
        assert encoded_sentence == [2] + text + [3]
        assert encoded_pair == [2] + text + [3] + text_2 + [3]