test_modeling_tf_albert.py 8.86 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import AlbertConfig, is_tf_available
Lysandre's avatar
Lysandre committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
Lysandre's avatar
Lysandre committed
24
25
26


if is_tf_available():
27
28
29
30
31
32
    from transformers.modeling_tf_albert import (
        TFAlbertModel,
        TFAlbertForMaskedLM,
        TFAlbertForSequenceClassification,
        TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
Lysandre's avatar
Lysandre committed
33
34


35
@require_tf
36
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
37
38

    all_model_classes = (
39
40
        (TFAlbertModel, TFAlbertForMaskedLM, TFAlbertForSequenceClassification) if is_tf_available() else ()
    )
Lysandre's avatar
Lysandre committed
41
42

    class TFAlbertModelTester(object):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            embedding_size=16,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
Lysandre's avatar
Lysandre committed
69
70
71
72
73
74
75
76
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
77
            self.embedding_size = embedding_size
Lysandre's avatar
Lysandre committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
94
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre's avatar
Lysandre committed
95
96
97

            input_mask = None
            if self.use_input_mask:
98
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
Lysandre's avatar
Lysandre committed
99
100
101

            token_type_ids = None
            if self.use_token_type_ids:
102
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre's avatar
Lysandre committed
103
104
105
106
107

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
108
109
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
Lysandre's avatar
Lysandre committed
110
111
112
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = AlbertConfig(
thomwolf's avatar
thomwolf committed
113
                vocab_size=self.vocab_size,
Lysandre's avatar
Lysandre committed
114
115
116
117
118
119
120
121
122
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
123
124
                initializer_range=self.initializer_range,
            )
Lysandre's avatar
Lysandre committed
125
126
127

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

128
129
130
        def create_and_check_albert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
131
132
133
134
135
            model = TFAlbertModel(config=config)
            # inputs = {'input_ids': input_ids,
            #           'attention_mask': input_mask,
            #           'token_type_ids': token_type_ids}
            # sequence_output, pooled_output = model(**inputs)
136
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Lysandre's avatar
Lysandre committed
137
138
139
140
141
142
143
144
145
146
147
148
            sequence_output, pooled_output = model(inputs)

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
149
150
151
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
Lysandre's avatar
Lysandre committed
152

153
154
155
        def create_and_check_albert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
156
            model = TFAlbertForMaskedLM(config=config)
157
158
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
Lysandre's avatar
Lysandre committed
159
160
161
162
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
163
164
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
Lysandre's avatar
Lysandre committed
165

166
167
168
        def create_and_check_albert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
169
170
            config.num_labels = self.num_labels
            model = TFAlbertForSequenceClassification(config=config)
171
172
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Lysandre's avatar
Lysandre committed
173
174
175
            result = {
                "logits": logits.numpy(),
            }
176
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
Lysandre's avatar
Lysandre committed
177
178
179

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
180
181
182
183
184
185
186
187
188
189
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
Lysandre's avatar
Lysandre committed
190
191
192
193
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
194
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
Lysandre's avatar
Lysandre committed
195
196
197
198
199
200
201
202
203
204

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
205
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
Lysandre's avatar
Lysandre committed
206
207
208

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
209
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
210

211
    @slow
Lysandre's avatar
Lysandre committed
212
    def test_model_from_pretrained(self):
Aymeric Augustin's avatar
Aymeric Augustin committed
213
        for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
214
            model = TFAlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
Lysandre's avatar
Lysandre committed
215
            self.assertIsNotNone(model)