binarized_data.py 3.45 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
Preprocessing script before distillation.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import logging
VictorSanh's avatar
VictorSanh committed
20
21
22
import pickle
import random
import time
Aymeric Augustin's avatar
Aymeric Augustin committed
23

VictorSanh's avatar
VictorSanh committed
24
import numpy as np
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26
27

from transformers import BertTokenizer, GPT2Tokenizer, RobertaTokenizer

VictorSanh's avatar
VictorSanh committed
28

29
30
31
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
32
logger = logging.getLogger(__name__)
VictorSanh's avatar
VictorSanh committed
33

34

VictorSanh's avatar
VictorSanh committed
35
def main():
36
37
38
39
40
41
42
    parser = argparse.ArgumentParser(
        description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)."
    )
    parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.")
    parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"])
    parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.")
    parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.")
VictorSanh's avatar
VictorSanh committed
43
44
    args = parser.parse_args()

45
46
    logger.info(f"Loading Tokenizer ({args.tokenizer_name})")
    if args.tokenizer_type == "bert":
47
        tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
48
49
50
        bos = tokenizer.special_tokens_map["cls_token"]  # `[CLS]`
        sep = tokenizer.special_tokens_map["sep_token"]  # `[SEP]`
    elif args.tokenizer_type == "roberta":
51
        tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
52
53
54
        bos = tokenizer.special_tokens_map["cls_token"]  # `<s>`
        sep = tokenizer.special_tokens_map["sep_token"]  # `</s>`
    elif args.tokenizer_type == "gpt2":
VictorSanh's avatar
VictorSanh committed
55
        tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
56
57
        bos = tokenizer.special_tokens_map["bos_token"]  # `<|endoftext|>`
        sep = tokenizer.special_tokens_map["eos_token"]  # `<|endoftext|>`
VictorSanh's avatar
VictorSanh committed
58

59
60
    logger.info(f"Loading text from {args.file_path}")
    with open(args.file_path, "r", encoding="utf8") as fp:
VictorSanh's avatar
VictorSanh committed
61
62
        data = fp.readlines()

63
64
    logger.info(f"Start encoding")
    logger.info(f"{len(data)} examples to process.")
VictorSanh's avatar
VictorSanh committed
65
66
67
68
69
70

    rslt = []
    iter = 0
    interval = 10000
    start = time.time()
    for text in data:
71
        text = f"{bos} {text.strip()} {sep}"
Lysandre's avatar
Remove  
Lysandre committed
72
        token_ids = tokenizer.encode(text, add_special_tokens=False)
VictorSanh's avatar
VictorSanh committed
73
74
75
76
77
        rslt.append(token_ids)

        iter += 1
        if iter % interval == 0:
            end = time.time()
78
            logger.info(f"{iter} examples processed. - {(end-start)/interval:.2f}s/expl")
VictorSanh's avatar
VictorSanh committed
79
            start = time.time()
80
81
    logger.info("Finished binarization")
    logger.info(f"{len(data)} examples processed.")
VictorSanh's avatar
VictorSanh committed
82

83
    dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle"
VictorSanh's avatar
VictorSanh committed
84
85
    rslt_ = [np.uint16(d) for d in rslt]
    random.shuffle(rslt_)
86
87
    logger.info(f"Dump to {dp_file}")
    with open(dp_file, "wb") as handle:
VictorSanh's avatar
VictorSanh committed
88
89
90
91
        pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
92
    main()