run_semantic_segmentation.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import json
import logging
import os
import random
import sys
21
import warnings
22
23
24
from dataclasses import dataclass, field
from typing import Optional

25
import evaluate
26
27
28
import numpy as np
import torch
from datasets import load_dataset
29
from huggingface_hub import hf_hub_download
30
31
32
33
34
35
36
37
from PIL import Image
from torch import nn
from torchvision import transforms
from torchvision.transforms import functional

import transformers
from transformers import (
    AutoConfig,
38
    AutoImageProcessor,
39
40
41
42
43
44
45
    AutoModelForSemanticSegmentation,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
48
49
50
51
52
53
54
from transformers.utils.versions import require_version


""" Finetuning any 馃 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
55
check_min_version("4.40.0.dev0")
56
57
58
59
60

require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")


def pad_if_smaller(img, size, fill=0):
amyeroberts's avatar
amyeroberts committed
61
62
63
64
65
    size = (size, size) if isinstance(size, int) else size
    original_width, original_height = img.size
    pad_height = size[1] - original_height if original_height < size[1] else 0
    pad_width = size[0] - original_width if original_width < size[0] else 0
    img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill)
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    return img


class Compose:
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class Identity:
    def __init__(self):
        pass

    def __call__(self, image, target):
        return image, target


class Resize:
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = functional.resize(image, self.size)
        target = functional.resize(target, self.size, interpolation=transforms.InterpolationMode.NEAREST)
        return image, target


class RandomResize:
    def __init__(self, min_size, max_size=None):
        self.min_size = min_size
        if max_size is None:
            max_size = min_size
        self.max_size = max_size

    def __call__(self, image, target):
        size = random.randint(self.min_size, self.max_size)
        image = functional.resize(image, size)
        target = functional.resize(target, size, interpolation=transforms.InterpolationMode.NEAREST)
        return image, target


class RandomCrop:
    def __init__(self, size):
amyeroberts's avatar
amyeroberts committed
113
        self.size = size if isinstance(size, tuple) else (size, size)
114
115
116
117

    def __call__(self, image, target):
        image = pad_if_smaller(image, self.size)
        target = pad_if_smaller(target, self.size, fill=255)
amyeroberts's avatar
amyeroberts committed
118
        crop_params = transforms.RandomCrop.get_params(image, self.size)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        image = functional.crop(image, *crop_params)
        target = functional.crop(target, *crop_params)
        return image, target


class RandomHorizontalFlip:
    def __init__(self, flip_prob):
        self.flip_prob = flip_prob

    def __call__(self, image, target):
        if random.random() < self.flip_prob:
            image = functional.hflip(image)
            target = functional.hflip(target)
        return image, target


class PILToTensor:
    def __call__(self, image, target):
        image = functional.pil_to_tensor(image)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class ConvertImageDtype:
    def __init__(self, dtype):
        self.dtype = dtype

    def __call__(self, image, target):
        image = functional.convert_image_dtype(image, self.dtype)
        return image, target


class Normalize:
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target):
        image = functional.normalize(image, mean=self.mean, std=self.std)
        return image, target


class ReduceLabels:
    def __call__(self, image, target):
        if not isinstance(target, np.ndarray):
            target = np.array(target).astype(np.uint8)
        # avoid using underflow conversion
        target[target == 0] = 255
        target = target - 1
        target[target == 254] = 255

        target = Image.fromarray(target)
        return image, target


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
    """

    dataset_name: Optional[str] = field(
        default="segments/sidewalk-semantic",
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
200
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
201
202
203
204
205
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        },
    )
    reduce_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
    )

    def __post_init__(self):
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="nvidia/mit-b0",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
244
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
245
246
    token: str = field(
        default=None,
247
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
248
            "help": (
249
250
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
251
            )
252
253
        },
    )
254
255
256
    use_auth_token: bool = field(
        default=None,
        metadata={
257
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
258
259
        },
    )
260
261
262
263
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
264
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
265
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
266
267
268
269
                "execute code present on the Hub on your local machine."
            )
        },
    )
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

285
    if model_args.use_auth_token is not None:
286
287
288
289
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
290
291
292
293
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

294
295
296
297
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)

298
299
300
301
302
303
304
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

305
306
307
308
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

309
310
311
312
313
314
315
316
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
317
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
318
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if data_args.dataset_name == "scene_parse_150":
359
        repo_id = "huggingface/label-files"
360
361
        filename = "ade20k-id2label.json"
    else:
362
        repo_id = data_args.dataset_name
363
        filename = "id2label.json"
364
    id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
365
366
367
368
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: str(k) for k, v in id2label.items()}

    # Load the mean IoU metric from the datasets package
369
    metric = evaluate.load("mean_iou", cache_dir=model_args.cache_dir)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    @torch.no_grad()
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        logits_tensor = torch.from_numpy(logits)
        # scale the logits to the size of the label
        logits_tensor = nn.functional.interpolate(
            logits_tensor,
            size=labels.shape[-2:],
            mode="bilinear",
            align_corners=False,
        ).argmax(dim=1)

        pred_labels = logits_tensor.detach().cpu().numpy()
        metrics = metric.compute(
            predictions=pred_labels,
            references=labels,
            num_labels=len(id2label),
            ignore_index=0,
391
            reduce_labels=image_processor.do_reduce_labels,
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        )
        # add per category metrics as individual key-value pairs
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
        per_category_iou = metrics.pop("per_category_iou").tolist()

        metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
        metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})

        return metrics

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        label2id=label2id,
        id2label=id2label,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
408
        token=model_args.token,
409
        trust_remote_code=model_args.trust_remote_code,
410
411
412
413
414
415
416
    )
    model = AutoModelForSemanticSegmentation.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
417
        token=model_args.token,
418
        trust_remote_code=model_args.trust_remote_code,
419
    )
420
421
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
422
423
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
424
        token=model_args.token,
425
        trust_remote_code=model_args.trust_remote_code,
426
427
428
429
430
    )

    # Define torchvision transforms to be applied to each image + target.
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
431
    if "shortest_edge" in image_processor.size:
amyeroberts's avatar
amyeroberts committed
432
        # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
433
        size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"])
amyeroberts's avatar
amyeroberts committed
434
    else:
435
        size = (image_processor.size["height"], image_processor.size["width"])
436
437
438
    train_transforms = Compose(
        [
            ReduceLabels() if data_args.reduce_labels else Identity(),
amyeroberts's avatar
amyeroberts committed
439
            RandomCrop(size=size),
440
441
442
            RandomHorizontalFlip(flip_prob=0.5),
            PILToTensor(),
            ConvertImageDtype(torch.float),
443
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
444
445
446
447
448
449
450
        ]
    )
    # Define torchvision transform to be applied to each image.
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
    val_transforms = Compose(
        [
            ReduceLabels() if data_args.reduce_labels else Identity(),
amyeroberts's avatar
amyeroberts committed
451
            Resize(size=size),
452
453
            PILToTensor(),
            ConvertImageDtype(torch.float),
454
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
455
456
457
458
459
460
461
462
463
464
465
        ]
    )

    def preprocess_train(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
            image, target = train_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

466
        encoding = {}
467
468
469
470
471
472
473
474
475
476
477
478
479
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    def preprocess_val(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
            image, target = val_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

480
        encoding = {}
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
        dataset["train"].set_transform(preprocess_train)

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
        dataset["validation"].set_transform(preprocess_val)

506
    # Initialize our trainer
507
508
509
510
511
512
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
513
        tokenizer=image_processor,
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": data_args.dataset_name,
        "tags": ["image-segmentation", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()