modeling_common_test.py 35.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import copy
20
import sys
thomwolf's avatar
thomwolf committed
21
22
import os
import shutil
23
import tempfile
thomwolf's avatar
thomwolf committed
24
25
import json
import random
26
import uuid
thomwolf's avatar
thomwolf committed
27

thomwolf's avatar
thomwolf committed
28
29
30
import unittest
import logging

31
from transformers import is_torch_available
32

33
34
from .utils import require_torch, slow, torch_device

35
if is_torch_available():
thomwolf's avatar
thomwolf committed
36
    import torch
37
    import numpy as np
thomwolf's avatar
thomwolf committed
38

39
    from transformers import (AdaptiveEmbedding, PretrainedConfig, PreTrainedModel,
thomwolf's avatar
thomwolf committed
40
41
                                    BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
                                    GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
thomwolf's avatar
thomwolf committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
if sys.version_info[0] == 2:
    import cPickle as pickle

    class TemporaryDirectory(object):
        """Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
        def __enter__(self):
            self.name = tempfile.mkdtemp()
            return self.name
        def __exit__(self, exc_type, exc_value, traceback):
            shutil.rmtree(self.name)
else:
    import pickle
    TemporaryDirectory = tempfile.TemporaryDirectory
    unicode = str
thomwolf's avatar
thomwolf committed
57

58
59
60
61
62
63
64
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if '_range' in key or '_std' in key:
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
65
66
class CommonTestCases:

67
    @require_torch
thomwolf's avatar
thomwolf committed
68
69
70
71
72
73
74
    class CommonModelTester(unittest.TestCase):

        model_tester = None
        all_model_classes = ()
        test_torchscript = True
        test_pruning = True
        test_resize_embeddings = True
LysandreJik's avatar
LysandreJik committed
75
        test_head_masking = True
thomwolf's avatar
thomwolf committed
76

77
78
79
80
81
        def test_save_load(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
82
                model.to(torch_device)
83
84
85
86
87
88
89
                model.eval()
                with torch.no_grad():
                    outputs = model(**inputs_dict)

                with TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model = model_class.from_pretrained(tmpdirname)
90
                    model.to(torch_device)
91
92
                    with torch.no_grad():
                        after_outputs = model(**inputs_dict)
thomwolf's avatar
no nans  
thomwolf committed
93
94

                    # Make sure we don't have nans
95
96
                    out_1 = after_outputs[0].cpu().numpy()
                    out_2 = outputs[0].cpu().numpy()
thomwolf's avatar
no nans  
thomwolf committed
97
98
99
                    out_1 = out_1[~np.isnan(out_1)]
                    out_2 = out_2[~np.isnan(out_2)]
                    max_diff = np.amax(np.abs(out_1 - out_2))
100
101
                    self.assertLessEqual(max_diff, 1e-5)

thomwolf's avatar
thomwolf committed
102
103
104
105
106
107
108
109
110
111
112
        def test_initialization(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            configs_no_init = _config_zero_init(config)
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
                for name, param in model.named_parameters():
                    if param.requires_grad:
                        self.assertIn(param.data.mean().item(), [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))

113
114
115
116
117
        def test_determinism(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
118
                model.to(torch_device)
119
120
121
122
123
                model.eval()
                first, second = model(inputs_dict["input_ids"])[0], model(inputs_dict["input_ids"])[0]
                self.assertEqual(first.ne(second).sum().item(), 0)


thomwolf's avatar
thomwolf committed
124
125
126
127
128
129
130
        def test_attention_outputs(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config)
131
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                model.eval()
                outputs = model(**inputs_dict)
                attentions = outputs[-1]
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads,
                    self.model_tester.seq_length,
                    self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
                out_len = len(outputs)

                # Check attention is always last and order is fine
                config.output_attentions = True
                config.output_hidden_states = True
                model = model_class(config)
149
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                model.eval()
                outputs = model(**inputs_dict)
                self.assertEqual(out_len+1, len(outputs))
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, True)

                attentions = outputs[-1]
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads,
                    self.model_tester.seq_length,
                    self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])

        def test_torchscript(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_attentions(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_attentions = True
            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_hidden_state(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_hidden_states = True
            self._create_and_check_torchscript(config, inputs_dict)

        def _create_and_check_torchscript(self, config, inputs_dict):
            if not self.test_torchscript:
                return

            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            configs_no_init.torchscript = True
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
189
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
                model.eval()
                inputs = inputs_dict['input_ids']  # Let's keep only input_ids

                try:
                    torch.jit.trace(model, inputs)
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                try:
                    traced_gpt2 = torch.jit.trace(model, inputs)
                    torch.jit.save(traced_gpt2, "traced_model.pt")
                except RuntimeError:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load("traced_model.pt")
                    os.remove("traced_model.pt")
                except ValueError:
                    self.fail("Couldn't load module.")

210
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
211
                model.eval()
212
213

                loaded_model.to(torch_device)
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                loaded_model.eval()

                model_params = model.parameters()
                loaded_model_params = loaded_model.parameters()

                models_equal = True
                for p1, p2 in zip(model_params, loaded_model_params):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)


        def test_headmasking(self):
LysandreJik's avatar
LysandreJik committed
228
229
230
            if not self.test_head_masking:
                return

231
            global_rng.seed(42)
thomwolf's avatar
thomwolf committed
232
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
233
            global_rng.seed()
thomwolf's avatar
thomwolf committed
234
235
236
237
238
239

            config.output_attentions = True
            config.output_hidden_states = True
            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
240
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
241
242
243
                model.eval()

                # Prepare head_mask
244
                # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
245
                head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device)
thomwolf's avatar
thomwolf committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                head_mask[0, 0] = 0
                head_mask[-1, :-1] = 0
                head_mask.requires_grad_(requires_grad=True)
                inputs = inputs_dict.copy()
                inputs['head_mask'] = head_mask

                outputs = model(**inputs)

                # Test that we can get a gradient back for importance score computation
                output = sum(t.sum() for t in outputs[0])
                output = output.sum()
                output.backward()
                multihead_outputs = head_mask.grad

                attentions = outputs[-1]
                hidden_states = outputs[-2]

                # Remove Nan
264
265
266
                for t in attentions:
                    self.assertLess(torch.sum(torch.isnan(t)), t.numel() / 4)  # Check we don't have more than 25% nans (arbitrary)
                attentions = [t.masked_fill(torch.isnan(t), 0.0) for t in attentions]  # remove them (the test is less complete)
thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

                self.assertIsNotNone(multihead_outputs)
                self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
                self.assertAlmostEqual(
                    attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(
                    attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)


        def test_head_pruning(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
287
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
288
289
290
291

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

thomwolf's avatar
thomwolf committed
292
293
294
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
295
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
                model.eval()
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                -1: [0]}
                model.prune_heads(heads_to_prune)
                outputs = model(**inputs_dict)

                attentions = outputs[-1]

                self.assertEqual(
                    attentions[0].shape[-3], 1)
                self.assertEqual(
                    attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(
                    attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)

311
312
313
314
315
316
        def test_head_pruning_save_load_from_pretrained(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
317
318
319
320

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

321
322
323
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
324
                model.to(torch_device)
325
326
327
328
329
330
331
332
333
                model.eval()
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                -1: [0]}
                model.prune_heads(heads_to_prune)
                directory = "pruned_model"
                if not os.path.exists(directory):
                    os.makedirs(directory)
                model.save_pretrained(directory)
                model = model_class.from_pretrained(directory)
334
                model.to(torch_device)
335
336
337

                outputs = model(**inputs_dict)
                attentions = outputs[-1]
338
339
340
                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
341
342
343
344
345
346
347
348
349

                shutil.rmtree(directory)

        def test_head_pruning_save_load_from_config_init(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
350
351
352
353

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

354
355
356
357
358
359
360
361
                config.output_attentions = True
                config.output_hidden_states = False

                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                 -1: [0]}
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
362
                model.to(torch_device)
363
364
365
366
                model.eval()

                outputs = model(**inputs_dict)
                attentions = outputs[-1]
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)

        def test_head_pruning_integration(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

                config.output_attentions = True
                config.output_hidden_states = False

                heads_to_prune = {0: [0], 1: [1, 2]}
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
389
                model.to(torch_device)
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
                model.eval()

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                directory = "pruned_model"

                if not os.path.exists(directory):
                    os.makedirs(directory)
                model.save_pretrained(directory)
                model = model_class.from_pretrained(directory)
406
                model.to(torch_device)
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                shutil.rmtree(directory)

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                heads_to_prune = {0: [0], 2: [1, 2]}
                model.prune_heads(heads_to_prune)

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads -1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})

thomwolf's avatar
thomwolf committed
430
431
432
433
434
435
436
437

        def test_hidden_states_output(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                config.output_hidden_states = True
                config.output_attentions = False
                model = model_class(config)
438
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                model.eval()
                outputs = model(**inputs_dict)
                hidden_states = outputs[-1]
                self.assertEqual(model.config.output_attentions, False)
                self.assertEqual(model.config.output_hidden_states, True)
                self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size])

        def test_resize_tokens_embeddings(self):
            original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            if not self.test_resize_embeddings:
                return

            for model_class in self.all_model_classes:
                config = copy.deepcopy(original_config)
                model = model_class(config)

                model_vocab_size = config.vocab_size
                # Retrieve the embeddings and clone theme
                model_embed = model.resize_token_embeddings(model_vocab_size)
                cloned_embeddings = model_embed.weight.clone()

                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 15)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

483
484
485
486
487
        def test_model_common_attributes(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
488
489
                self.assertIsInstance(
                    model.get_input_embeddings(),
490
                    (torch.nn.Embedding, AdaptiveEmbedding)
491
                )
thomwolf's avatar
thomwolf committed
492
                model.set_input_embeddings(torch.nn.Embedding(10, 10))
493
494
495
496
                x = model.get_output_embeddings()
                self.assertTrue(
                    x is None or isinstance(x, torch.nn.Linear)
                )
497

thomwolf's avatar
thomwolf committed
498
        def test_tie_model_weights(self):
LysandreJik's avatar
LysandreJik committed
499
500
501
            if not self.test_torchscript:
                return

thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
511
512
513
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            def check_same_values(layer_1, layer_2):
                equal = True
                for p1, p2 in zip(layer_1.weight, layer_2.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        equal = False
                return equal

            for model_class in self.all_model_classes:
                config.torchscript = True
                model_not_tied = model_class(config)
thomwolf's avatar
thomwolf committed
514
515
516
                if model_not_tied.get_output_embeddings() is None:
                    continue

thomwolf's avatar
thomwolf committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                params_not_tied = list(model_not_tied.parameters())

                config_tied = copy.deepcopy(config)
                config_tied.torchscript = False
                model_tied = model_class(config_tied)
                params_tied = list(model_tied.parameters())

                # Check that the embedding layer and decoding layer are the same in size and in value
                self.assertGreater(len(params_not_tied), len(params_tied))
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # embeddings.weight.data.div_(2)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # decoding.weight.data.div_(4)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # Check that after resize they remain tied.
                model_tied.resize_token_embeddings(config.vocab_size + 10)
                params_tied_2 = list(model_tied.parameters())
                self.assertGreater(len(params_not_tied), len(params_tied))
                self.assertEqual(len(params_tied_2), len(params_tied))

                # decoding.weight.data.mul_(20)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
                # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

551
552
553
554
555
556
557
        def test_inputs_embeds(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]

            for model_class in self.all_model_classes:
                model = model_class(config)
558
                model.to(torch_device)
559
560
561
562
563
564
                model.eval()

                wte = model.get_input_embeddings()
                inputs_dict["inputs_embeds"] = wte(input_ids)
                outputs = model(**inputs_dict)

thomwolf's avatar
thomwolf committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    class GPTModelTester(CommonModelTester):

        def __init__(self,
                        parent,
                        batch_size=13,
                        seq_length=7,
                        is_training=True,
                        use_position_ids=True,
                        use_token_type_ids=True,
                        use_labels=True,
                        vocab_size=99,
                        n_positions=33,
                        hidden_size=32,
                        num_hidden_layers=5,
                        num_attention_heads=4,
                        n_choices=3,
                        type_sequence_label_size=2,
                        initializer_range=0.02,
                        num_labels=3,
                        scope=None,
                        config_class=None,
                        base_model_class=None,
                        lm_head_model_class=None,
                        double_head_model_class=None,
                        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_positions = n_positions
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.n_choices = n_choices
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope
            self.config_class = config_class
            self.base_model_class = base_model_class
            self.lm_head_model_class = lm_head_model_class
            self.double_head_model_class = double_head_model_class
            self.all_model_classes = (base_model_class, lm_head_model_class, double_head_model_class)

        def prepare_config_and_inputs(self):
            total_num_tokens = self.vocab_size
            input_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_num_tokens)

            position_ids = None
            if self.use_position_ids:
                position_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)

            token_type_ids = None
            if self.use_token_type_ids:
                total_voc = self.vocab_size
                token_type_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

            mc_labels = None
            lm_labels = None
            mc_token_ids = None
            if self.use_labels:
                mc_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                lm_labels = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
                mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)

            config = self.config_class(
                vocab_size_or_config_json_file=self.vocab_size,
                n_positions=self.n_positions,
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                initializer_range=self.initializer_range)

            return (config, input_ids, token_type_ids, position_ids,
                    mc_labels, lm_labels, mc_token_ids)

        def create_and_check_base_model(self, config, input_ids, token_type_ids, position_ids,
                                mc_labels, lm_labels, mc_token_ids):
            model = self.base_model_class(config)
649
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
650
            model.eval()
thomwolf's avatar
thomwolf committed
651

thomwolf's avatar
thomwolf committed
652
653
654
            outputs = model(input_ids, position_ids, token_type_ids)
            outputs = model(input_ids, position_ids)
            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
655

thomwolf's avatar
thomwolf committed
656
657
658
659
            hidden_state = outputs[0]
            self.parent.assertListEqual(
                list(hidden_state.size()),
                [self.batch_size, self.n_choices, self.seq_length, self.hidden_size])
thomwolf's avatar
thomwolf committed
660
661


thomwolf's avatar
thomwolf committed
662
663
664
        def create_and_check_lm_head(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            model = self.lm_head_model_class(config)
665
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
666
667
668
            model.eval()
            outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
            loss, lm_logits = outputs[:2]
thomwolf's avatar
thomwolf committed
669

thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
676
677
678
679
680
681
            total_voc = self.vocab_size
            self.parent.assertListEqual(
                list(lm_logits.size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
                list(loss.size()),
                [])

        def create_and_check_presents(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            for model_class in self.all_model_classes:
                model = model_class(config)
682
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
                model.eval()
                outputs = model(input_ids)
                presents = outputs[-1]
                self.parent.assertEqual(self.num_hidden_layers, len(presents))
                self.parent.assertListEqual(
                    list(presents[0].size()),
                    [2, self.batch_size * self.n_choices, self.num_attention_heads,
                        self.seq_length, self.hidden_size // self.num_attention_heads])

        def create_and_check_double_heads(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            model = self.double_head_model_class(config)
695
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
            model.eval()
            outputs = model(input_ids, mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels,
                            token_type_ids=token_type_ids, position_ids=position_ids)
            lm_loss, mc_loss, lm_logits, mc_logits = outputs[:4]
            loss = [lm_loss, mc_loss]

            total_voc = self.vocab_size
            self.parent.assertListEqual(
                list(lm_logits.size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
                list(mc_logits.size()),
                [self.batch_size, self.n_choices])
            self.parent.assertListEqual(
                [list(l.size()) for l in loss],
                [[], []])

        def create_and_check_model_from_pretrained(self):
714
            cache_dir = "/tmp/transformers_test/"
thomwolf's avatar
thomwolf committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
            for model_name in list(self.base_model_class.pretrained_model_archive_map.keys())[:1]:
                model = self.base_model_class.from_pretrained(model_name, cache_dir=cache_dir)
                shutil.rmtree(cache_dir)
                self.parent.assertIsNotNone(model)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, token_type_ids, position_ids,
                mc_labels, lm_labels, mc_token_ids) = config_and_inputs
            inputs_dict = {'input_ids': input_ids}
            return config, inputs_dict

        def run_common_tests(self, test_presents=False):
            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_base_model(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_lm_head(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_double_heads(*config_and_inputs)

            if test_presents:
                config_and_inputs = self.prepare_config_and_inputs()
                self.create_and_check_presents(*config_and_inputs)

741
        @slow
thomwolf's avatar
thomwolf committed
742
743
        def run_slow_tests(self):
            self.create_and_check_model_from_pretrained()
thomwolf's avatar
thomwolf committed
744
745
746
747
748
749
750
751


class ConfigTester(object):
    def __init__(self, parent, config_class=None, **kwargs):
        self.parent = parent
        self.config_class = config_class
        self.inputs_dict = kwargs

thomwolf's avatar
thomwolf committed
752
753
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
thomwolf's avatar
thomwolf committed
754
        self.parent.assertTrue(hasattr(config, 'vocab_size'))
thomwolf's avatar
thomwolf committed
755
756
757
758
        self.parent.assertTrue(hasattr(config, 'hidden_size'))
        self.parent.assertTrue(hasattr(config, 'num_attention_heads'))
        self.parent.assertTrue(hasattr(config, 'num_hidden_layers'))

thomwolf's avatar
thomwolf committed
759
760
761
762
763
764
765
766
    def create_and_test_config_to_json_string(self):
        config = self.config_class(**self.inputs_dict)
        obj = json.loads(config.to_json_string())
        for key, value in self.inputs_dict.items():
            self.parent.assertEqual(obj[key], value)

    def create_and_test_config_to_json_file(self):
        config_first = self.config_class(**self.inputs_dict)
767
        json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
thomwolf's avatar
thomwolf committed
768
769
770
771
772
773
        config_first.to_json_file(json_file_path)
        config_second = self.config_class.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())

    def run_common_tests(self):
thomwolf's avatar
thomwolf committed
774
        self.create_and_test_config_common_properties()
thomwolf's avatar
thomwolf committed
775
776
777
778
        self.create_and_test_config_to_json_string()
        self.create_and_test_config_to_json_file()


779
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
780
781


thomwolf's avatar
thomwolf committed
782
783
784
def ids_tensor(shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
785
        rng = global_rng
thomwolf's avatar
thomwolf committed
786

thomwolf's avatar
thomwolf committed
787
788
789
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
790

thomwolf's avatar
thomwolf committed
791
792
793
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
794

795
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
796
797


798
799
800
801
802
803
804
805
806
807
808
809
810
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

811
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
812
813


814
@require_torch
thomwolf's avatar
thomwolf committed
815
class ModelUtilsTest(unittest.TestCase):
816
    @slow
thomwolf's avatar
thomwolf committed
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)

thomwolf's avatar
thomwolf committed
837

thomwolf's avatar
thomwolf committed
838
839
if __name__ == "__main__":
    unittest.main()