modeling_common_test.py 31.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import copy
thomwolf's avatar
thomwolf committed
20
21
22
23
import os
import shutil
import json
import random
24
import uuid
thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
27
import unittest
import logging
thomwolf's avatar
thomwolf committed
28
import pytest
thomwolf's avatar
thomwolf committed
29

30
from transformers import is_torch_available
31
32

if is_torch_available():
thomwolf's avatar
thomwolf committed
33
    import torch
thomwolf's avatar
thomwolf committed
34

35
    from transformers import (PretrainedConfig, PreTrainedModel,
thomwolf's avatar
thomwolf committed
36
37
                                    BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
                                    GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
38
else:
thomwolf's avatar
thomwolf committed
39
    pytestmark = pytest.mark.skip("Require Torch")
thomwolf's avatar
thomwolf committed
40
41


42
43
44
45
46
47
48
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if '_range' in key or '_std' in key:
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
57
class CommonTestCases:

    class CommonModelTester(unittest.TestCase):

        model_tester = None
        all_model_classes = ()
        test_torchscript = True
        test_pruning = True
        test_resize_embeddings = True
LysandreJik's avatar
LysandreJik committed
58
        test_head_masking = True
thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
66
67
68
69
70

        def test_initialization(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            configs_no_init = _config_zero_init(config)
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
                for name, param in model.named_parameters():
                    if param.requires_grad:
                        self.assertIn(param.data.mean().item(), [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))

71
72
73
74
75
76
77
78
79
80
        def test_determinism(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                model = model_class(config)
                model.eval()
                first, second = model(inputs_dict["input_ids"])[0], model(inputs_dict["input_ids"])[0]
                self.assertEqual(first.ne(second).sum().item(), 0)


thomwolf's avatar
thomwolf committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        def test_attention_outputs(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config)
                model.eval()
                outputs = model(**inputs_dict)
                attentions = outputs[-1]
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads,
                    self.model_tester.seq_length,
                    self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])
                out_len = len(outputs)

                # Check attention is always last and order is fine
                config.output_attentions = True
                config.output_hidden_states = True
                model = model_class(config)
                model.eval()
                outputs = model(**inputs_dict)
                self.assertEqual(out_len+1, len(outputs))
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, True)

                attentions = outputs[-1]
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads,
                    self.model_tester.seq_length,
                    self.model_tester.key_len if hasattr(self.model_tester, 'key_len') else self.model_tester.seq_length])

        def test_torchscript(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_attentions(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_attentions = True
            self._create_and_check_torchscript(config, inputs_dict)

        def test_torchscript_output_hidden_state(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            config.output_hidden_states = True
            self._create_and_check_torchscript(config, inputs_dict)

        def _create_and_check_torchscript(self, config, inputs_dict):
            if not self.test_torchscript:
                return

            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            configs_no_init.torchscript = True
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
                model.eval()
                inputs = inputs_dict['input_ids']  # Let's keep only input_ids

                try:
                    torch.jit.trace(model, inputs)
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                try:
                    traced_gpt2 = torch.jit.trace(model, inputs)
                    torch.jit.save(traced_gpt2, "traced_model.pt")
                except RuntimeError:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load("traced_model.pt")
                    os.remove("traced_model.pt")
                except ValueError:
                    self.fail("Couldn't load module.")

                model.eval()
                loaded_model.eval()

                model_params = model.parameters()
                loaded_model_params = loaded_model.parameters()

                models_equal = True
                for p1, p2 in zip(model_params, loaded_model_params):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)


        def test_headmasking(self):
LysandreJik's avatar
LysandreJik committed
179
180
181
            if not self.test_head_masking:
                return

182
            global_rng.seed(42)
thomwolf's avatar
thomwolf committed
183
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
184
            global_rng.seed()
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193

            config.output_attentions = True
            config.output_hidden_states = True
            configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
            for model_class in self.all_model_classes:
                model = model_class(config=configs_no_init)
                model.eval()

                # Prepare head_mask
194
                # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
                head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads)
                head_mask[0, 0] = 0
                head_mask[-1, :-1] = 0
                head_mask.requires_grad_(requires_grad=True)
                inputs = inputs_dict.copy()
                inputs['head_mask'] = head_mask

                outputs = model(**inputs)

                # Test that we can get a gradient back for importance score computation
                output = sum(t.sum() for t in outputs[0])
                output = output.sum()
                output.backward()
                multihead_outputs = head_mask.grad

                attentions = outputs[-1]
                hidden_states = outputs[-2]

                # Remove Nan
214
215
216
                for t in attentions:
                    self.assertLess(torch.sum(torch.isnan(t)), t.numel() / 4)  # Check we don't have more than 25% nans (arbitrary)
                attentions = [t.masked_fill(torch.isnan(t), 0.0) for t in attentions]  # remove them (the test is less complete)
thomwolf's avatar
thomwolf committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

                self.assertIsNotNone(multihead_outputs)
                self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
                self.assertAlmostEqual(
                    attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(
                    attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(
                    attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)


        def test_head_pruning(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
237
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
238
239
240
241

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
                model.eval()
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                -1: [0]}
                model.prune_heads(heads_to_prune)
                outputs = model(**inputs_dict)

                attentions = outputs[-1]

                self.assertEqual(
                    attentions[0].shape[-3], 1)
                self.assertEqual(
                    attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(
                    attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)

260
261
262
263
264
265
        def test_head_pruning_save_load_from_pretrained(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
266
267
268
269

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                config.output_attentions = True
                config.output_hidden_states = False
                model = model_class(config=config)
                model.eval()
                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                -1: [0]}
                model.prune_heads(heads_to_prune)
                directory = "pruned_model"
                if not os.path.exists(directory):
                    os.makedirs(directory)
                model.save_pretrained(directory)
                model = model_class.from_pretrained(directory)

                outputs = model(**inputs_dict)
                attentions = outputs[-1]
285
286
287
                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
288
289
290
291
292
293
294
295
296

                shutil.rmtree(directory)

        def test_head_pruning_save_load_from_config_init(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
LysandreJik's avatar
LysandreJik committed
297
298
299
300

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

301
302
303
304
305
306
307
308
309
310
311
312
                config.output_attentions = True
                config.output_hidden_states = False

                heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
                                 -1: [0]}
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
                model.eval()

                outputs = model(**inputs_dict)
                attentions = outputs[-1]
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

                self.assertEqual(attentions[0].shape[-3], 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)

        def test_head_pruning_integration(self):
            if not self.test_pruning:
                return

            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

                if "head_mask" in inputs_dict:
                    del inputs_dict["head_mask"]

                config.output_attentions = True
                config.output_hidden_states = False

                heads_to_prune = {0: [0], 1: [1, 2]}
                config.pruned_heads = heads_to_prune

                model = model_class(config=config)
                model.eval()

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                directory = "pruned_model"

                if not os.path.exists(directory):
                    os.makedirs(directory)
                model.save_pretrained(directory)
                model = model_class.from_pretrained(directory)
                shutil.rmtree(directory)

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                heads_to_prune = {0: [0], 2: [1, 2]}
                model.prune_heads(heads_to_prune)

                outputs = model(**inputs_dict)
                attentions = outputs[-1]

                self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads -1)
                self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
                self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)

                self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})

thomwolf's avatar
thomwolf committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        def test_hidden_states_output(self):
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            for model_class in self.all_model_classes:
                config.output_hidden_states = True
                config.output_attentions = False
                model = model_class(config)
                model.eval()
                outputs = model(**inputs_dict)
                hidden_states = outputs[-1]
                self.assertEqual(model.config.output_attentions, False)
                self.assertEqual(model.config.output_hidden_states, True)
                self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size])

        def test_resize_tokens_embeddings(self):
            original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            if not self.test_resize_embeddings:
                return

            for model_class in self.all_model_classes:
                config = copy.deepcopy(original_config)
                model = model_class(config)

                model_vocab_size = config.vocab_size
                # Retrieve the embeddings and clone theme
                model_embed = model.resize_token_embeddings(model_vocab_size)
                cloned_embeddings = model_embed.weight.clone()

                # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size + 10)
                self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

                # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
                model_embed = model.resize_token_embeddings(model_vocab_size - 15)
                self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
                # Check that it actually resizes the embeddings matrix
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

                # Check that adding and removing tokens has not modified the first part of the embedding matrix.
                models_equal = True
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

                self.assertTrue(models_equal)

        def test_tie_model_weights(self):
LysandreJik's avatar
LysandreJik committed
427
428
429
            if not self.test_torchscript:
                return

thomwolf's avatar
thomwolf committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            def check_same_values(layer_1, layer_2):
                equal = True
                for p1, p2 in zip(layer_1.weight, layer_2.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        equal = False
                return equal

            for model_class in self.all_model_classes:
                if not hasattr(model_class, 'tie_weights'):
                    continue

                config.torchscript = True
                model_not_tied = model_class(config)
                params_not_tied = list(model_not_tied.parameters())

                config_tied = copy.deepcopy(config)
                config_tied.torchscript = False
                model_tied = model_class(config_tied)
                params_tied = list(model_tied.parameters())

                # Check that the embedding layer and decoding layer are the same in size and in value
                self.assertGreater(len(params_not_tied), len(params_tied))
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # embeddings.weight.data.div_(2)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # # Check that after modification, they remain the same.
                # decoding.weight.data.div_(4)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
                # self.assertTrue(check_same_values(embeddings, decoding))

                # Check that after resize they remain tied.
                model_tied.resize_token_embeddings(config.vocab_size + 10)
                params_tied_2 = list(model_tied.parameters())
                self.assertGreater(len(params_not_tied), len(params_tied))
                self.assertEqual(len(params_tied_2), len(params_tied))

                # decoding.weight.data.mul_(20)
                # # Check that the embedding layer and decoding layer are the same in size and in value
                # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
                # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))


    class GPTModelTester(CommonModelTester):

        def __init__(self,
                        parent,
                        batch_size=13,
                        seq_length=7,
                        is_training=True,
                        use_position_ids=True,
                        use_token_type_ids=True,
                        use_labels=True,
                        vocab_size=99,
                        n_positions=33,
                        hidden_size=32,
                        num_hidden_layers=5,
                        num_attention_heads=4,
                        n_choices=3,
                        type_sequence_label_size=2,
                        initializer_range=0.02,
                        num_labels=3,
                        scope=None,
                        config_class=None,
                        base_model_class=None,
                        lm_head_model_class=None,
                        double_head_model_class=None,
                        ):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_position_ids = use_position_ids
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_positions = n_positions
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.n_choices = n_choices
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.scope = scope
            self.config_class = config_class
            self.base_model_class = base_model_class
            self.lm_head_model_class = lm_head_model_class
            self.double_head_model_class = double_head_model_class
            self.all_model_classes = (base_model_class, lm_head_model_class, double_head_model_class)

        def prepare_config_and_inputs(self):
            total_num_tokens = self.vocab_size
            input_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_num_tokens)

            position_ids = None
            if self.use_position_ids:
                position_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)

            token_type_ids = None
            if self.use_token_type_ids:
                total_voc = self.vocab_size
                token_type_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)

            mc_labels = None
            lm_labels = None
            mc_token_ids = None
            if self.use_labels:
                mc_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                lm_labels = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
                mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)

            config = self.config_class(
                vocab_size_or_config_json_file=self.vocab_size,
                n_positions=self.n_positions,
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                initializer_range=self.initializer_range)

            return (config, input_ids, token_type_ids, position_ids,
                    mc_labels, lm_labels, mc_token_ids)

        def create_and_check_base_model(self, config, input_ids, token_type_ids, position_ids,
                                mc_labels, lm_labels, mc_token_ids):
            model = self.base_model_class(config)
            model.eval()
thomwolf's avatar
thomwolf committed
564

thomwolf's avatar
thomwolf committed
565
566
567
            outputs = model(input_ids, position_ids, token_type_ids)
            outputs = model(input_ids, position_ids)
            outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
568

thomwolf's avatar
thomwolf committed
569
570
571
572
            hidden_state = outputs[0]
            self.parent.assertListEqual(
                list(hidden_state.size()),
                [self.batch_size, self.n_choices, self.seq_length, self.hidden_size])
thomwolf's avatar
thomwolf committed
573
574


thomwolf's avatar
thomwolf committed
575
576
577
578
579
580
        def create_and_check_lm_head(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            model = self.lm_head_model_class(config)
            model.eval()
            outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
            loss, lm_logits = outputs[:2]
thomwolf's avatar
thomwolf committed
581

thomwolf's avatar
thomwolf committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
            total_voc = self.vocab_size
            self.parent.assertListEqual(
                list(lm_logits.size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
                list(loss.size()),
                [])

        def create_and_check_presents(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            for model_class in self.all_model_classes:
                model = model_class(config)
                model.eval()
                outputs = model(input_ids)
                presents = outputs[-1]
                self.parent.assertEqual(self.num_hidden_layers, len(presents))
                self.parent.assertListEqual(
                    list(presents[0].size()),
                    [2, self.batch_size * self.n_choices, self.num_attention_heads,
                        self.seq_length, self.hidden_size // self.num_attention_heads])

        def create_and_check_double_heads(self, config, input_ids, token_type_ids, position_ids,
                                        mc_labels, lm_labels, mc_token_ids):
            model = self.double_head_model_class(config)
            model.eval()
            outputs = model(input_ids, mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels,
                            token_type_ids=token_type_ids, position_ids=position_ids)
            lm_loss, mc_loss, lm_logits, mc_logits = outputs[:4]
            loss = [lm_loss, mc_loss]

            total_voc = self.vocab_size
            self.parent.assertListEqual(
                list(lm_logits.size()),
                [self.batch_size, self.n_choices, self.seq_length, total_voc])
            self.parent.assertListEqual(
                list(mc_logits.size()),
                [self.batch_size, self.n_choices])
            self.parent.assertListEqual(
                [list(l.size()) for l in loss],
                [[], []])

        def create_and_check_model_from_pretrained(self):
624
            cache_dir = "/tmp/transformers_test/"
thomwolf's avatar
thomwolf committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
            for model_name in list(self.base_model_class.pretrained_model_archive_map.keys())[:1]:
                model = self.base_model_class.from_pretrained(model_name, cache_dir=cache_dir)
                shutil.rmtree(cache_dir)
                self.parent.assertIsNotNone(model)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, token_type_ids, position_ids,
                mc_labels, lm_labels, mc_token_ids) = config_and_inputs
            inputs_dict = {'input_ids': input_ids}
            return config, inputs_dict

        def run_common_tests(self, test_presents=False):
            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_base_model(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_lm_head(*config_and_inputs)

            config_and_inputs = self.prepare_config_and_inputs()
            self.create_and_check_double_heads(*config_and_inputs)

            if test_presents:
                config_and_inputs = self.prepare_config_and_inputs()
                self.create_and_check_presents(*config_and_inputs)

        def run_slow_tests(self):
            self.create_and_check_model_from_pretrained()
thomwolf's avatar
thomwolf committed
653
654
655
656
657
658
659
660


class ConfigTester(object):
    def __init__(self, parent, config_class=None, **kwargs):
        self.parent = parent
        self.config_class = config_class
        self.inputs_dict = kwargs

thomwolf's avatar
thomwolf committed
661
662
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
thomwolf's avatar
thomwolf committed
663
        self.parent.assertTrue(hasattr(config, 'vocab_size'))
thomwolf's avatar
thomwolf committed
664
665
666
667
        self.parent.assertTrue(hasattr(config, 'hidden_size'))
        self.parent.assertTrue(hasattr(config, 'num_attention_heads'))
        self.parent.assertTrue(hasattr(config, 'num_hidden_layers'))

thomwolf's avatar
thomwolf committed
668
669
670
671
672
673
674
675
    def create_and_test_config_to_json_string(self):
        config = self.config_class(**self.inputs_dict)
        obj = json.loads(config.to_json_string())
        for key, value in self.inputs_dict.items():
            self.parent.assertEqual(obj[key], value)

    def create_and_test_config_to_json_file(self):
        config_first = self.config_class(**self.inputs_dict)
676
        json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
thomwolf's avatar
thomwolf committed
677
678
679
680
681
682
        config_first.to_json_file(json_file_path)
        config_second = self.config_class.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())

    def run_common_tests(self):
thomwolf's avatar
thomwolf committed
683
        self.create_and_test_config_common_properties()
thomwolf's avatar
thomwolf committed
684
685
686
687
        self.create_and_test_config_to_json_string()
        self.create_and_test_config_to_json_file()


688
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
689
690


thomwolf's avatar
thomwolf committed
691
692
693
def ids_tensor(shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
694
        rng = global_rng
thomwolf's avatar
thomwolf committed
695

thomwolf's avatar
thomwolf committed
696
697
698
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
699

thomwolf's avatar
thomwolf committed
700
701
702
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
703

thomwolf's avatar
thomwolf committed
704
    return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727


class ModelUtilsTest(unittest.TestCase):
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)

thomwolf's avatar
thomwolf committed
728

thomwolf's avatar
thomwolf committed
729
730
if __name__ == "__main__":
    unittest.main()