modeling_longformer.py 62.3 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Longformer model. """

import logging
import math
Sylvain Gugger's avatar
Sylvain Gugger committed
19
import warnings
Iz Beltagy's avatar
Iz Beltagy committed
20
21
22

import torch
import torch.nn as nn
23
from torch.nn import CrossEntropyLoss, MSELoss
Iz Beltagy's avatar
Iz Beltagy committed
24
25
26
27
28
29
30
31
32
33
from torch.nn import functional as F

from .configuration_longformer import LongformerConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
from .modeling_bert import BertPreTrainedModel
from .modeling_roberta import RobertaLMHead, RobertaModel


logger = logging.getLogger(__name__)

34
35
36
37
38
39
40
41
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "allenai/longformer-base-4096",
    "allenai/longformer-large-4096",
    "allenai/longformer-large-4096-finetuned-triviaqa",
    "allenai/longformer-base-4096-extra.pos.embd.only",
    "allenai/longformer-large-4096-extra.pos.embd.only",
    # See all Longformer models at https://huggingface.co/models?filter=longformer
]
Iz Beltagy's avatar
Iz Beltagy committed
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def _get_question_end_index(input_ids, sep_token_id):
    """
        Computes the index of the first occurance of `sep_token_id`.
    """

    sep_token_indices = (input_ids == sep_token_id).nonzero()
    batch_size = input_ids.shape[0]

    assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions"
    assert (
        sep_token_indices.shape[0] == 3 * batch_size
    ), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error."

    return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1]


def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True):
    """
        Computes global attention mask by putting attention on all tokens
        before `sep_token_id` if `before_sep_token is True` else after
        `sep_token_id`.
    """

    question_end_index = _get_question_end_index(input_ids, sep_token_id)
    question_end_index = question_end_index.unsqueeze(dim=1)  # size: batch_size x 1
    # bool attention mask with True in locations of global attention
    attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device)
    if before_sep_token is True:
        attention_mask = (attention_mask.expand_as(input_ids) < question_end_index).to(torch.uint8)
    else:
        # last token is separation token and should not be counted and in the middle are two separation tokens
        attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.uint8) * (
            attention_mask.expand_as(input_ids) < input_ids.shape[-1]
        ).to(torch.uint8)

    return attention_mask


Iz Beltagy's avatar
Iz Beltagy committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class LongformerSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        # separate projection layers for tokens with global attention
        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        attention_window = config.attention_window[self.layer_id]
        assert (
            attention_window % 2 == 0
        ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
        assert (
            attention_window > 0
        ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"

        self.one_sided_attention_window_size = attention_window // 2

    @staticmethod
    def _skew(x, direction):
        """Convert diagonals into columns (or columns into diagonals depending on `direction`"""
        x_padded = F.pad(x, direction)  # padding value is not important because it will be overwritten
        x_padded = x_padded.view(*x_padded.size()[:-2], x_padded.size(-1), x_padded.size(-2))
        return x_padded

    @staticmethod
    def _skew2(x):
        """shift every row 1 step to right converting columns into diagonals"""
        # X = B x C x M x L
        B, C, M, L = x.size()
        x = F.pad(x, (0, M + 1))  # B x C x M x (L+M+1). Padding value is not important because it'll be overwritten
        x = x.view(B, C, -1)  # B x C x ML+MM+M
        x = x[:, :, :-M]  # B x C x ML+MM
        x = x.view(B, C, M, M + L)  # B x C, M x L+M
        x = x[:, :, :, :-1]
        return x

    @staticmethod
    def _chunk(x, w):
        """convert into overlapping chunkings. Chunk size = 2w, overlap size = w"""

        # non-overlapping chunks of size = 2w
        x = x.view(x.size(0), x.size(1) // (w * 2), w * 2, x.size(2))

        # use `as_strided` to make the chunks overlap with an overlap size = w
        chunk_size = list(x.size())
        chunk_size[1] = chunk_size[1] * 2 - 1

        chunk_stride = list(x.stride())
        chunk_stride[1] = chunk_stride[1] // 2
        return x.as_strided(size=chunk_size, stride=chunk_stride)

    def _mask_invalid_locations(self, input_tensor, w) -> torch.Tensor:
        affected_seqlen = w
        beginning_mask_2d = input_tensor.new_ones(w, w + 1).tril().flip(dims=[0])
        beginning_mask = beginning_mask_2d[None, :, None, :]
        ending_mask = beginning_mask.flip(dims=(1, 3))
        beginning_input = input_tensor[:, :affected_seqlen, :, : w + 1]
ZhuBaohe's avatar
ZhuBaohe committed
156
        beginning_mask = beginning_mask.expand(beginning_input.size())
Iz Beltagy's avatar
Iz Beltagy committed
157
158
        beginning_input.masked_fill_(beginning_mask == 1, -float("inf"))  # `== 1` converts to bool or uint8
        ending_input = input_tensor[:, -affected_seqlen:, :, -(w + 1) :]
ZhuBaohe's avatar
ZhuBaohe committed
159
        ending_mask = ending_mask.expand(ending_input.size())
Iz Beltagy's avatar
Iz Beltagy committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        ending_input.masked_fill_(ending_mask == 1, -float("inf"))  # `== 1` converts to bool or uint8

    def _sliding_chunks_matmul_qk(self, q: torch.Tensor, k: torch.Tensor, w: int):
        """Matrix multiplicatio of query x key tensors using with a sliding window attention pattern.
        This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer)
        with an overlap of size w"""
        batch_size, seqlen, num_heads, head_dim = q.size()
        assert seqlen % (w * 2) == 0, f"Sequence length should be multiple of {w * 2}. Given {seqlen}"
        assert q.size() == k.size()

        chunks_count = seqlen // w - 1

        # group batch_size and num_heads dimensions into one, then chunk seqlen into chunks of size w * 2
        q = q.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)
        k = k.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)

        chunk_q = self._chunk(q, w)
        chunk_k = self._chunk(k, w)

        # matrix multipication
        # bcxd: batch_size * num_heads x chunks x 2w x head_dim
        # bcyd: batch_size * num_heads x chunks x 2w x head_dim
        # bcxy: batch_size * num_heads x chunks x 2w x 2w
        chunk_attn = torch.einsum("bcxd,bcyd->bcxy", (chunk_q, chunk_k))  # multiply

        # convert diagonals into columns
        diagonal_chunk_attn = self._skew(chunk_attn, direction=(0, 0, 0, 1))

        # allocate space for the overall attention matrix where the chunks are compined. The last dimension
        # has (w * 2 + 1) columns. The first (w) columns are the w lower triangles (attention from a word to
        # w previous words). The following column is attention score from each word to itself, then
        # followed by w columns for the upper triangle.

        diagonal_attn = diagonal_chunk_attn.new_empty((batch_size * num_heads, chunks_count + 1, w, w * 2 + 1))

        # copy parts from diagonal_chunk_attn into the compined matrix of attentions
        # - copying the main diagonal and the upper triangle
        diagonal_attn[:, :-1, :, w:] = diagonal_chunk_attn[:, :, :w, : w + 1]
        diagonal_attn[:, -1, :, w:] = diagonal_chunk_attn[:, -1, w:, : w + 1]
        # - copying the lower triangle
        diagonal_attn[:, 1:, :, :w] = diagonal_chunk_attn[:, :, -(w + 1) : -1, w + 1 :]
        diagonal_attn[:, 0, 1:w, 1:w] = diagonal_chunk_attn[:, 0, : w - 1, 1 - w :]

        # separate batch_size and num_heads dimensions again
        diagonal_attn = diagonal_attn.view(batch_size, num_heads, seqlen, 2 * w + 1).transpose(2, 1)

        self._mask_invalid_locations(diagonal_attn, w)
        return diagonal_attn

    def _sliding_chunks_matmul_pv(self, prob: torch.Tensor, v: torch.Tensor, w: int):
        """Same as _sliding_chunks_matmul_qk but for prob and value tensors. It is expecting the same output
        format from _sliding_chunks_matmul_qk"""
        batch_size, seqlen, num_heads, head_dim = v.size()
        assert seqlen % (w * 2) == 0
        assert prob.size()[:3] == v.size()[:3]
        assert prob.size(3) == 2 * w + 1
        chunks_count = seqlen // w - 1
        # group batch_size and num_heads dimensions into one, then chunk seqlen into chunks of size 2w
        chunk_prob = prob.transpose(1, 2).reshape(batch_size * num_heads, seqlen // w, w, 2 * w + 1)

        # group batch_size and num_heads dimensions into one
        v = v.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)

        # pad seqlen with w at the beginning of the sequence and another w at the end
        padded_v = F.pad(v, (0, 0, w, w), value=-1)

        # chunk padded_v into chunks of size 3w and an overlap of size w
        chunk_v_size = (batch_size * num_heads, chunks_count + 1, 3 * w, head_dim)
        chunk_v_stride = padded_v.stride()
        chunk_v_stride = chunk_v_stride[0], w * chunk_v_stride[1], chunk_v_stride[1], chunk_v_stride[2]
        chunk_v = padded_v.as_strided(size=chunk_v_size, stride=chunk_v_stride)

        skewed_prob = self._skew2(chunk_prob)

        context = torch.einsum("bcwd,bcdh->bcwh", (skewed_prob, chunk_v))
        return context.view(batch_size, num_heads, seqlen, head_dim).transpose(1, 2)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
244
        output_attentions=False,
Iz Beltagy's avatar
Iz Beltagy committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    ):
        """
        LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`.
        Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer.

        The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
            -ve: no attention
              0: local attention
            +ve: global attention

        `encoder_hidden_states` and `encoder_attention_mask` are not supported and should be None
        """
        # TODO: add support for `encoder_hidden_states` and `encoder_attention_mask`
        assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None"
        assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and shiould be None"

        if attention_mask is not None:
            attention_mask = attention_mask.squeeze(dim=2).squeeze(dim=1)
            key_padding_mask = attention_mask < 0
            extra_attention_mask = attention_mask > 0
            remove_from_windowed_attention_mask = attention_mask != 0

            num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1)
            max_num_extra_indices_per_batch = num_extra_indices_per_batch.max()
            if max_num_extra_indices_per_batch <= 0:
                extra_attention_mask = None
            else:
                # To support the case of variable number of global attention in the rows of a batch,
                # we use the following three selection masks to select global attention embeddings
                # in a 3d tensor and pad it to `max_num_extra_indices_per_batch`
                # 1) selecting embeddings that correspond to global attention
                extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True)
                zero_to_max_range = torch.arange(
                    0, max_num_extra_indices_per_batch, device=num_extra_indices_per_batch.device
                )
                # mask indicating which values are actually going to be padding
                selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1)
                # 2) location of the non-padding values in the selected global attention
                selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True)
                # 3) location of the padding values in the selected global attention
                selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True)
        else:
            remove_from_windowed_attention_mask = None
            extra_attention_mask = None
            key_padding_mask = None

        hidden_states = hidden_states.transpose(0, 1)
        seqlen, batch_size, embed_dim = hidden_states.size()
        assert embed_dim == self.embed_dim
        q = self.query(hidden_states)
        k = self.key(hidden_states)
        v = self.value(hidden_states)
        q /= math.sqrt(self.head_dim)

        q = q.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        k = k.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        # attn_weights = (batch_size, seqlen, num_heads, window*2+1)
        attn_weights = self._sliding_chunks_matmul_qk(q, k, self.one_sided_attention_window_size)
        if remove_from_windowed_attention_mask is not None:
            # This implementation is fast and takes very little memory because num_heads x hidden_size = 1
            # from (batch_size x seqlen) to (batch_size x seqlen x num_heads x hidden_size)
            remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(
                dim=-1
            )
            # cast to fp32/fp16 then replace 1's with -inf
            float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(
                remove_from_windowed_attention_mask, -10000.0
            )
            ones = float_mask.new_ones(size=float_mask.size())  # tensor of ones
            # diagonal mask with zeros everywhere and -inf inplace of padding
            d_mask = self._sliding_chunks_matmul_qk(ones, float_mask, self.one_sided_attention_window_size)
            attn_weights += d_mask
        assert list(attn_weights.size()) == [
            batch_size,
            seqlen,
            self.num_heads,
            self.one_sided_attention_window_size * 2 + 1,
        ]

        # the extra attention
        if extra_attention_mask is not None:
            selected_k = k.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros]
            # (batch_size, seqlen, num_heads, max_num_extra_indices_per_batch)
            selected_attn_weights = torch.einsum("blhd,bshd->blhs", (q, selected_k))
ZhuBaohe's avatar
ZhuBaohe committed
330
            selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000.0
Iz Beltagy's avatar
Iz Beltagy committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            # concat to attn_weights
            # (batch_size, seqlen, num_heads, extra attention count + 2*window+1)
            attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1)

        attn_weights_fp32 = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
        attn_weights = attn_weights_fp32.type_as(attn_weights)

        if key_padding_mask is not None:
            # softmax sometimes inserts NaN if all positions are masked, replace them with 0
            attn_weights = torch.masked_fill(attn_weights, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0)

        attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
        v = v.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        attn = None
        if extra_attention_mask is not None:
            selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch)
            selected_v = v.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros]
            # use `matmul` because `einsum` crashes sometimes with fp16
            # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
351
            attn = torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2)).transpose(1, 2)
Iz Beltagy's avatar
Iz Beltagy committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            attn_probs = attn_probs.narrow(
                -1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch
            ).contiguous()
        if attn is None:
            attn = self._sliding_chunks_matmul_pv(attn_probs, v, self.one_sided_attention_window_size)
        else:
            attn += self._sliding_chunks_matmul_pv(attn_probs, v, self.one_sided_attention_window_size)

        assert attn.size() == (batch_size, seqlen, self.num_heads, self.head_dim), "Unexpected size"
        attn = attn.transpose(0, 1).reshape(seqlen, batch_size, embed_dim).contiguous()

        # For this case, we'll just recompute the attention for these indices
        # and overwrite the attn tensor.
        # TODO: remove the redundant computation
        if extra_attention_mask is not None:
            selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, batch_size, embed_dim)
            selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[
                extra_attention_mask_nonzeros[::-1]
            ]

            q = self.query_global(selected_hidden_states)
            k = self.key_global(hidden_states)
            v = self.value_global(hidden_states)
            q /= math.sqrt(self.head_dim)

            q = (
                q.contiguous()
                .view(max_num_extra_indices_per_batch, batch_size * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )  # (batch_size * self.num_heads, max_num_extra_indices_per_batch, head_dim)
            k = (
                k.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
            )  # batch_size * self.num_heads, seqlen, head_dim)
            v = (
                v.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
            )  # batch_size * self.num_heads, seqlen, head_dim)
            attn_weights = torch.bmm(q, k.transpose(1, 2))
            assert list(attn_weights.size()) == [batch_size * self.num_heads, max_num_extra_indices_per_batch, seqlen]

            attn_weights = attn_weights.view(batch_size, self.num_heads, max_num_extra_indices_per_batch, seqlen)
            attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0
            if key_padding_mask is not None:
                attn_weights = attn_weights.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2), -10000.0,)
            attn_weights = attn_weights.view(batch_size * self.num_heads, max_num_extra_indices_per_batch, seqlen)
            attn_weights_float = F.softmax(
                attn_weights, dim=-1, dtype=torch.float32
            )  # use fp32 for numerical stability
            attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
            selected_attn = torch.bmm(attn_probs, v)
            assert list(selected_attn.size()) == [
                batch_size * self.num_heads,
                max_num_extra_indices_per_batch,
                self.head_dim,
            ]

            selected_attn_4d = selected_attn.view(
                batch_size, self.num_heads, max_num_extra_indices_per_batch, self.head_dim
            )
            nonzero_selected_attn = selected_attn_4d[
                selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]
            ]
            attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(
                len(selection_padding_mask_nonzeros[0]), -1
415
            )
Iz Beltagy's avatar
Iz Beltagy committed
416
417

        context_layer = attn.transpose(0, 1)
418
        if output_attentions:
Iz Beltagy's avatar
Iz Beltagy committed
419
420
421
422
423
424
425
426
427
428
429
430
431
            if extra_attention_mask is not None:
                # With global attention, return global attention probabilities only
                # batch_size x num_heads x max_num_global_attention_tokens x sequence_length
                # which is the attention weights from tokens with global attention to all tokens
                # It doesn't not return local attention
                # In case of variable number of global attantion in the rows of a batch,
                # attn_weights are padded with -10000.0 attention scores
                attn_weights = attn_weights.view(batch_size, self.num_heads, max_num_extra_indices_per_batch, seqlen)
            else:
                # without global attention, return local attention probabilities
                # batch_size x num_heads x sequence_length x window_size
                # which is the attention weights of every token attending to its neighbours
                attn_weights = attn_weights.permute(0, 2, 1, 3)
432
        outputs = (context_layer, attn_weights) if output_attentions else (context_layer,)
Iz Beltagy's avatar
Iz Beltagy committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        return outputs


LONGFORMER_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

LONGFORMER_INPUTS_DOCSTRING = r"""
    Args:
450
        input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
Iz Beltagy's avatar
Iz Beltagy committed
451
452
453
454
455
456
457
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.LonmgformerTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
458
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
459
460
461
462
463
464
465
466
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__

        global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
            Mask to decide the attention given on each token, local attention or global attenion.
Iz Beltagy's avatar
Iz Beltagy committed
467
468
469
470
            Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for
            task-specific finetuning because it makes the model more flexible at representing the task. For example,
            for classification, the <s> token should be given global attention. For QA, all question tokens should also have
            global attention. Please refer to the Longformer paper https://arxiv.org/abs/2004.05150 for more details.
471
472
473
            Mask values selected in ``[0, 1]``:
            ``0`` for local attention (a sliding window attention),
            ``1`` for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
Iz Beltagy's avatar
Iz Beltagy committed
474

475
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
Iz Beltagy's avatar
Iz Beltagy committed
476
477
478
479
480
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`_
481
        position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
Iz Beltagy's avatar
Iz Beltagy committed
482
483
484
485
486
487
488
489
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
490
491
        output_attentions (:obj:`bool`, `optional`, defaults to `:obj:`None`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
Iz Beltagy's avatar
Iz Beltagy committed
492
493
494
495
496
497
498
499
500
501
"""


@add_start_docstrings(
    "The bare Longformer Model outputting raw hidden-states without any specific head on top.",
    LONGFORMER_START_DOCSTRING,
)
class LongformerModel(RobertaModel):
    """
    This class overrides :class:`~transformers.RobertaModel` to provide the ability to process
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
505
    long sequences following the selfattention approach described in `Longformer: the Long-Document Transformer
    <https://arxiv.org/abs/2004.05150>`_ by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer selfattention
    combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in
    memory and compute.
Iz Beltagy's avatar
Iz Beltagy committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    The selfattention module `LongformerSelfAttention` implemented here supports the combination of local and
    global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive
    and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream
    tasks. Future release will add support for autoregressive attention, but the support for dilated attention
    requires a custom CUDA kernel to be memory and compute efficient.

    """

    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)

        if isinstance(config.attention_window, int):
522
523
            assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
            assert config.attention_window > 0, "`config.attention_window` has to be positive"
Iz Beltagy's avatar
Iz Beltagy committed
524
525
526
            config.attention_window = [config.attention_window] * config.num_hidden_layers  # one value per layer
        else:
            assert len(config.attention_window) == config.num_hidden_layers, (
527
                "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
Iz Beltagy's avatar
Iz Beltagy committed
528
529
530
                f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
            )

531
532
533
        for i, layer in enumerate(self.encoder.layer):
            # replace the `modeling_bert.BertSelfAttention` object with `LongformerSelfAttention`
            layer.attention.self = LongformerSelfAttention(config, layer_id=i)
Iz Beltagy's avatar
Iz Beltagy committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

        self.init_weights()

    def _pad_to_window_size(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor,
        attention_window: int,
        pad_token_id: int,
    ):
        """A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""

        assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
        input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
        batch_size, seqlen = input_shape[:2]

        padding_len = (attention_window - seqlen % attention_window) % attention_window
        if padding_len > 0:
            logger.info(
                "Input ids are automatically padded from {} to {} to be a multiple of `config.attention_window`: {}".format(
                    seqlen, seqlen + padding_len, attention_window
                )
            )
            if input_ids is not None:
                input_ids = F.pad(input_ids, (0, padding_len), value=pad_token_id)
            if attention_mask is not None:
                attention_mask = F.pad(
                    attention_mask, (0, padding_len), value=False
                )  # no attention on the padding tokens
            if token_type_ids is not None:
                token_type_ids = F.pad(token_type_ids, (0, padding_len), value=0)  # pad with token_type_id = 0
            if position_ids is not None:
                # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
                position_ids = F.pad(position_ids, (0, padding_len), value=pad_token_id)
            if inputs_embeds is not None:
                input_ids_padding = inputs_embeds.new_full(
                    (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long,
                )
                inputs_embeds_padding = self.embeddings(input_ids_padding)
                inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)

        return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds

580
    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Iz Beltagy's avatar
Iz Beltagy committed
581
582
583
584
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
585
        global_attention_mask=None,
Iz Beltagy's avatar
Iz Beltagy committed
586
587
588
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
589
        output_attentions=None,
Iz Beltagy's avatar
Iz Beltagy committed
590
591
592
593
594
595
596
597
598
599
600
601
    ):
        r"""

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
602
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Iz Beltagy's avatar
Iz Beltagy committed
603
604
605
606
607
608
609
610
611
612
613
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        import torch
        from transformers import LongformerModel, LongformerTokenizer

614
615
        model = LongformerModel.from_pretrained('allenai/longformer-base-4096')
        tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
Iz Beltagy's avatar
Iz Beltagy committed
616
617
618
619
620
621
622
623
624
625
626
627
628

        SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
        input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

        # Attention mask values -- 0: no attention, 1: local attention, 2: global attention
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention
        attention_mask[:, [1, 4, 21,]] = 2  # Set global attention based on the task. For example,
                                            # classification: the <s> token
                                            # QA: question tokens
                                            # LM: potentially on the beginning of sentences and paragraphs
        sequence_output, pooled_output = model(input_ids, attention_mask=attention_mask)
        """

629
630
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions

Iz Beltagy's avatar
Iz Beltagy committed
631
632
633
634
635
636
        # padding
        attention_window = (
            self.config.attention_window
            if isinstance(self.config.attention_window, int)
            else max(self.config.attention_window)
        )
637
638
639
640
641
642
643
644
645
646
647
648
649

        # merge `global_attention_mask` and `attention_mask`
        if global_attention_mask is not None:
            # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
            # (global_attention_mask + 1) => 1 for local attention, 2 for global attention
            # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
            if attention_mask is not None:
                attention_mask = attention_mask * (global_attention_mask + 1)
            else:
                # simply use `global_attention_mask` as `attention_mask`
                # if no `attention_mask` is given
                attention_mask = global_attention_mask + 1

Iz Beltagy's avatar
Iz Beltagy committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            attention_window=attention_window,
            pad_token_id=self.config.pad_token_id,
        )

        # embed
        output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=None,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
670
            output_attentions=output_attentions,
Iz Beltagy's avatar
Iz Beltagy committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        )

        # undo padding
        if padding_len > 0:
            # `output` has the following tensors: sequence_output, pooled_output, (hidden_states), (attentions)
            # `sequence_output`: unpad because the calling function is expecting a length == input_ids.size(1)
            # `pooled_output`: independent of the sequence length
            # `hidden_states`: mainly used for debugging and analysis, so keep the padding
            # `attentions`: mainly used for debugging and analysis, so keep the padding
            output = output[0][:, :-padding_len], *output[1:]

        return output


@add_start_docstrings("""Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING)
class LongformerForMaskedLM(BertPreTrainedModel):
    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)

        self.longformer = LongformerModel(config)
        self.lm_head = RobertaLMHead(config)

        self.init_weights()

698
    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
Iz Beltagy's avatar
Iz Beltagy committed
699
700
701
702
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
703
        global_attention_mask=None,
Iz Beltagy's avatar
Iz Beltagy committed
704
705
706
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
707
        labels=None,
708
        output_attentions=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
709
        **kwargs
Iz Beltagy's avatar
Iz Beltagy committed
710
711
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
712
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Iz Beltagy's avatar
Iz Beltagy committed
713
714
715
716
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
Sylvain Gugger's avatar
Sylvain Gugger committed
717
718
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
Iz Beltagy's avatar
Iz Beltagy committed
719
720
721

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
Sylvain Gugger's avatar
Sylvain Gugger committed
722
        masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Iz Beltagy's avatar
Iz Beltagy committed
723
724
725
726
727
728
729
730
            Masked language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
731
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Iz Beltagy's avatar
Iz Beltagy committed
732
733
734
735
736
737
738
739
740
741
742
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        import torch
        from transformers import LongformerForMaskedLM, LongformerTokenizer

743
744
        model = LongformerForMaskedLM.from_pretrained('allenai/longformer-base-4096')
        tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
Iz Beltagy's avatar
Iz Beltagy committed
745
746
747
748
749
750

        SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
        input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

        attention_mask = None  # default is local attention everywhere, which is a good choice for MaskedLM
                               # check ``LongformerModel.forward`` for more details how to set `attention_mask`
Sylvain Gugger's avatar
Sylvain Gugger committed
751
        loss, prediction_scores = model(input_ids, attention_mask=attention_mask, labels=input_ids)
Iz Beltagy's avatar
Iz Beltagy committed
752
753
        """

Sylvain Gugger's avatar
Sylvain Gugger committed
754
755
756
757
758
759
760
761
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                DeprecationWarning,
            )
            labels = kwargs.pop("masked_lm_labels")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."

Iz Beltagy's avatar
Iz Beltagy committed
762
763
764
        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
765
            global_attention_mask=global_attention_mask,
Iz Beltagy's avatar
Iz Beltagy committed
766
767
768
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
769
            output_attentions=output_attentions,
Iz Beltagy's avatar
Iz Beltagy committed
770
771
772
773
774
775
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here

Sylvain Gugger's avatar
Sylvain Gugger committed
776
        if labels is not None:
Iz Beltagy's avatar
Iz Beltagy committed
777
            loss_fct = CrossEntropyLoss()
Sylvain Gugger's avatar
Sylvain Gugger committed
778
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Iz Beltagy's avatar
Iz Beltagy committed
779
780
781
            outputs = (masked_lm_loss,) + outputs

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
782
783


784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
@add_start_docstrings(
    """Longformer Model transformer with a sequence classification/regression head on top (a linear layer
    on top of the pooled output) e.g. for GLUE tasks. """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForSequenceClassification(BertPreTrainedModel):
    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config)
        self.classifier = LongformerClassificationHead(config)

800
801
        self.init_weights()

802
    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
803
804
805
806
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
807
        global_attention_mask=None,
808
809
810
811
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
812
        output_attentions=None,
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.LongformerConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
832
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
833
834
835
836
837
838
839
840
841
842
843
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import LongformerTokenizer, LongformerForSequenceClassification
        import torch

844
845
        tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
        model = LongformerForSequenceClassification.from_pretrained('allenai/longformer-base-4096')
846
847
848
849
850
851
852
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

        """

853
854
855
856
857
        if global_attention_mask is None:
            logger.info("Initializing global attention on CLS token...")
            global_attention_mask = torch.zeros_like(input_ids)
            # global attention on cls token
            global_attention_mask[:, 0] = 1
858
859
860
861

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
862
            global_attention_mask=global_attention_mask,
863
864
865
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
866
            output_attentions=output_attentions,
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)


class LongformerClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, hidden_states, **kwargs):
        hidden_states = hidden_states[:, 0, :]  # take <s> token (equiv. to [CLS])
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        output = self.out_proj(hidden_states)
        return output


904
@add_start_docstrings(
905
    """Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA (a linear layers on top of
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForQuestionAnswering(BertPreTrainedModel):
    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

922
    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
923
924
    def forward(
        self,
925
        input_ids=None,
926
        attention_mask=None,
927
        global_attention_mask=None,
928
929
930
931
932
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
933
        output_attentions=None,
934
935
936
937
938
939
940
941
942
943
944
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
    Returns:
945
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.LongformerConfig`) and inputs:
946
947
948
949
950
951
952
953
954
955
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-start scores (before SoftMax).
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
956
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
957
958
959
960
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
961

962
    Examples::
963

964
965
966
        from transformers import LongformerTokenizer, LongformerForQuestionAnswering
        import torch

967
968
        tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
        model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa")
969
970

        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
971
        encoding = tokenizer.encode_plus(question, text, return_tensors="pt")
972
973
974
975
976
977
        input_ids = encoding["input_ids"]

        # default is local attention everywhere
        # the forward method will automatically set global attention on question tokens
        attention_mask = encoding["attention_mask"]

978
979
980
981
982
983
        start_scores, end_scores = model(input_ids, attention_mask=attention_mask)
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())

        answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1]
        answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # remove space prepending space token

984
985
986
        """

        # set global attention on question tokens
987
988
989
990
        if global_attention_mask is None:
            logger.info("Initializing global attention on question tokens...")
            # put global attention on all tokens until `config.sep_token_id` is reached
            global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id)
991
992
993
994

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
995
            global_attention_mask=global_attention_mask,
996
997
998
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
999
            output_attentions=output_attentions,
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        outputs = (start_logits, end_logits,) + outputs[2:]
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048


@add_start_docstrings(
    """Longformer Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForTokenClassification(BertPreTrainedModel):
    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1049
    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1050
1051
1052
1053
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
1054
        global_attention_mask=None,
1055
1056
1057
1058
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
1059
        output_attentions=None,
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.LongformerConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1077
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import LongformerTokenizer, LongformerForTokenClassification
        import torch

1089
1090
        tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
        model = LongformerForTokenClassification.from_pretrained('allenai/longformer-base-4096')
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]

        """

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
1101
            global_attention_mask=global_attention_mask,
1102
1103
1104
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
1105
            output_attentions=output_attentions,
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), scores, (hidden_states), (attentions)
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155


@add_start_docstrings(
    """Longformer Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForMultipleChoice(BertPreTrainedModel):
    config_class = LongformerConfig
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)

        self.longformer = LongformerModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
    def forward(
        self,
        input_ids=None,
        token_type_ids=None,
        attention_mask=None,
1156
        global_attention_mask=None,
1157
1158
1159
        labels=None,
        position_ids=None,
        inputs_embeds=None,
1160
        output_attentions=None,
1161
1162
1163
1164
1165
1166
1167
1168
1169
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
Sylvain Gugger's avatar
Sylvain Gugger committed
1170
        loss (:obj:`torch.FloatTensor`` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
            Classification loss.
        classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1181
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
1182
1183
1184
1185
1186
1187
1188
1189
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

1190
        from transformers import LongformerTokenizer, LongformerForMultipleChoice
1191
1192
        import torch

1193
1194
1195
1196
1197
        tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')
        model = LongformerForMultipleChoice.from_pretrained('allenai/longformer-base-4096')
        # context = "The dog is cute" | choice = "the dog" / "the cat"
        choices = [("The dog is cute", "the dog"), ("The dog is cute", "the cat")]
        input_ids = torch.tensor([tokenizer.encode(s[0], s[1], add_special_tokens=True) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
1198
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
1199
1200

        # global attention is automatically put on "the dog" and "the cat"
1201
1202
1203
1204
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]

        """
1205
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1206

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        # set global attention on question tokens
        if global_attention_mask is None:
            logger.info("Initializing global attention on multiple choice...")
            # put global attention on all tokens after `config.sep_token_id`
            global_attention_mask = torch.stack(
                [
                    _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False)
                    for i in range(num_choices)
                ],
                dim=1,
            )

1219
        flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1220
1221
1222
        flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1223
1224
1225
1226
1227
        flat_global_attention_mask = (
            global_attention_mask.view(-1, global_attention_mask.size(-1))
            if global_attention_mask is not None
            else None
        )
1228
1229
1230
1231
1232
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )
1233

1234
1235
1236
1237
1238
        outputs = self.longformer(
            flat_input_ids,
            position_ids=flat_position_ids,
            token_type_ids=flat_token_type_ids,
            attention_mask=flat_attention_mask,
1239
            global_attention_mask=flat_global_attention_mask,
1240
            inputs_embeds=flat_inputs_embeds,
1241
            output_attentions=output_attentions,
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        )
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            outputs = (loss,) + outputs

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)