modeling_longformer.py 44.1 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# coding=utf-8
# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Longformer model. """

import logging
import math

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F

from .configuration_longformer import LongformerConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
from .modeling_bert import BertPreTrainedModel
from .modeling_roberta import RobertaLMHead, RobertaModel


logger = logging.getLogger(__name__)

LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "longformer-base-4096": "https://s3.amazonaws.com/models.huggingface.co/bert/allenai/longformer-base-4096/pytorch_model.bin",
    "longformer-large-4096": "https://s3.amazonaws.com/models.huggingface.co/bert/allenai/longformer-large-4096/pytorch_model.bin",
}


class LongformerSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
        self.output_attentions = config.output_attentions
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        # separate projection layers for tokens with global attention
        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        attention_window = config.attention_window[self.layer_id]
        assert (
            attention_window % 2 == 0
        ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
        assert (
            attention_window > 0
        ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"

        self.one_sided_attention_window_size = attention_window // 2

    @staticmethod
    def _skew(x, direction):
        """Convert diagonals into columns (or columns into diagonals depending on `direction`"""
        x_padded = F.pad(x, direction)  # padding value is not important because it will be overwritten
        x_padded = x_padded.view(*x_padded.size()[:-2], x_padded.size(-1), x_padded.size(-2))
        return x_padded

    @staticmethod
    def _skew2(x):
        """shift every row 1 step to right converting columns into diagonals"""
        # X = B x C x M x L
        B, C, M, L = x.size()
        x = F.pad(x, (0, M + 1))  # B x C x M x (L+M+1). Padding value is not important because it'll be overwritten
        x = x.view(B, C, -1)  # B x C x ML+MM+M
        x = x[:, :, :-M]  # B x C x ML+MM
        x = x.view(B, C, M, M + L)  # B x C, M x L+M
        x = x[:, :, :, :-1]
        return x

    @staticmethod
    def _chunk(x, w):
        """convert into overlapping chunkings. Chunk size = 2w, overlap size = w"""

        # non-overlapping chunks of size = 2w
        x = x.view(x.size(0), x.size(1) // (w * 2), w * 2, x.size(2))

        # use `as_strided` to make the chunks overlap with an overlap size = w
        chunk_size = list(x.size())
        chunk_size[1] = chunk_size[1] * 2 - 1

        chunk_stride = list(x.stride())
        chunk_stride[1] = chunk_stride[1] // 2
        return x.as_strided(size=chunk_size, stride=chunk_stride)

    def _mask_invalid_locations(self, input_tensor, w) -> torch.Tensor:
        affected_seqlen = w
        beginning_mask_2d = input_tensor.new_ones(w, w + 1).tril().flip(dims=[0])
        beginning_mask = beginning_mask_2d[None, :, None, :]
        ending_mask = beginning_mask.flip(dims=(1, 3))
        seqlen = input_tensor.size(1)
        beginning_input = input_tensor[:, :affected_seqlen, :, : w + 1]
        beginning_mask = beginning_mask[:, :seqlen].expand(beginning_input.size())
        beginning_input.masked_fill_(beginning_mask == 1, -float("inf"))  # `== 1` converts to bool or uint8
        ending_input = input_tensor[:, -affected_seqlen:, :, -(w + 1) :]
        ending_mask = ending_mask[:, -seqlen:].expand(ending_input.size())
        ending_input.masked_fill_(ending_mask == 1, -float("inf"))  # `== 1` converts to bool or uint8

    def _sliding_chunks_matmul_qk(self, q: torch.Tensor, k: torch.Tensor, w: int):
        """Matrix multiplicatio of query x key tensors using with a sliding window attention pattern.
        This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer)
        with an overlap of size w"""
        batch_size, seqlen, num_heads, head_dim = q.size()
        assert seqlen % (w * 2) == 0, f"Sequence length should be multiple of {w * 2}. Given {seqlen}"
        assert q.size() == k.size()

        chunks_count = seqlen // w - 1

        # group batch_size and num_heads dimensions into one, then chunk seqlen into chunks of size w * 2
        q = q.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)
        k = k.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)

        chunk_q = self._chunk(q, w)
        chunk_k = self._chunk(k, w)

        # matrix multipication
        # bcxd: batch_size * num_heads x chunks x 2w x head_dim
        # bcyd: batch_size * num_heads x chunks x 2w x head_dim
        # bcxy: batch_size * num_heads x chunks x 2w x 2w
        chunk_attn = torch.einsum("bcxd,bcyd->bcxy", (chunk_q, chunk_k))  # multiply

        # convert diagonals into columns
        diagonal_chunk_attn = self._skew(chunk_attn, direction=(0, 0, 0, 1))

        # allocate space for the overall attention matrix where the chunks are compined. The last dimension
        # has (w * 2 + 1) columns. The first (w) columns are the w lower triangles (attention from a word to
        # w previous words). The following column is attention score from each word to itself, then
        # followed by w columns for the upper triangle.

        diagonal_attn = diagonal_chunk_attn.new_empty((batch_size * num_heads, chunks_count + 1, w, w * 2 + 1))

        # copy parts from diagonal_chunk_attn into the compined matrix of attentions
        # - copying the main diagonal and the upper triangle
        diagonal_attn[:, :-1, :, w:] = diagonal_chunk_attn[:, :, :w, : w + 1]
        diagonal_attn[:, -1, :, w:] = diagonal_chunk_attn[:, -1, w:, : w + 1]
        # - copying the lower triangle
        diagonal_attn[:, 1:, :, :w] = diagonal_chunk_attn[:, :, -(w + 1) : -1, w + 1 :]
        diagonal_attn[:, 0, 1:w, 1:w] = diagonal_chunk_attn[:, 0, : w - 1, 1 - w :]

        # separate batch_size and num_heads dimensions again
        diagonal_attn = diagonal_attn.view(batch_size, num_heads, seqlen, 2 * w + 1).transpose(2, 1)

        self._mask_invalid_locations(diagonal_attn, w)
        return diagonal_attn

    def _sliding_chunks_matmul_pv(self, prob: torch.Tensor, v: torch.Tensor, w: int):
        """Same as _sliding_chunks_matmul_qk but for prob and value tensors. It is expecting the same output
        format from _sliding_chunks_matmul_qk"""
        batch_size, seqlen, num_heads, head_dim = v.size()
        assert seqlen % (w * 2) == 0
        assert prob.size()[:3] == v.size()[:3]
        assert prob.size(3) == 2 * w + 1
        chunks_count = seqlen // w - 1
        # group batch_size and num_heads dimensions into one, then chunk seqlen into chunks of size 2w
        chunk_prob = prob.transpose(1, 2).reshape(batch_size * num_heads, seqlen // w, w, 2 * w + 1)

        # group batch_size and num_heads dimensions into one
        v = v.transpose(1, 2).reshape(batch_size * num_heads, seqlen, head_dim)

        # pad seqlen with w at the beginning of the sequence and another w at the end
        padded_v = F.pad(v, (0, 0, w, w), value=-1)

        # chunk padded_v into chunks of size 3w and an overlap of size w
        chunk_v_size = (batch_size * num_heads, chunks_count + 1, 3 * w, head_dim)
        chunk_v_stride = padded_v.stride()
        chunk_v_stride = chunk_v_stride[0], w * chunk_v_stride[1], chunk_v_stride[1], chunk_v_stride[2]
        chunk_v = padded_v.as_strided(size=chunk_v_size, stride=chunk_v_stride)

        skewed_prob = self._skew2(chunk_prob)

        context = torch.einsum("bcwd,bcdh->bcwh", (skewed_prob, chunk_v))
        return context.view(batch_size, num_heads, seqlen, head_dim).transpose(1, 2)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
        """
        LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`.
        Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer.

        The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
            -ve: no attention
              0: local attention
            +ve: global attention

        `encoder_hidden_states` and `encoder_attention_mask` are not supported and should be None
        """
        # TODO: add support for `encoder_hidden_states` and `encoder_attention_mask`
        assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None"
        assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and shiould be None"

        if attention_mask is not None:
            attention_mask = attention_mask.squeeze(dim=2).squeeze(dim=1)
            key_padding_mask = attention_mask < 0
            extra_attention_mask = attention_mask > 0
            remove_from_windowed_attention_mask = attention_mask != 0

            num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1)
            max_num_extra_indices_per_batch = num_extra_indices_per_batch.max()
            if max_num_extra_indices_per_batch <= 0:
                extra_attention_mask = None
            else:
                # To support the case of variable number of global attention in the rows of a batch,
                # we use the following three selection masks to select global attention embeddings
                # in a 3d tensor and pad it to `max_num_extra_indices_per_batch`
                # 1) selecting embeddings that correspond to global attention
                extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True)
                zero_to_max_range = torch.arange(
                    0, max_num_extra_indices_per_batch, device=num_extra_indices_per_batch.device
                )
                # mask indicating which values are actually going to be padding
                selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1)
                # 2) location of the non-padding values in the selected global attention
                selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True)
                # 3) location of the padding values in the selected global attention
                selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True)
        else:
            remove_from_windowed_attention_mask = None
            extra_attention_mask = None
            key_padding_mask = None

        hidden_states = hidden_states.transpose(0, 1)
        seqlen, batch_size, embed_dim = hidden_states.size()
        assert embed_dim == self.embed_dim
        q = self.query(hidden_states)
        k = self.key(hidden_states)
        v = self.value(hidden_states)
        q /= math.sqrt(self.head_dim)

        q = q.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        k = k.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        # attn_weights = (batch_size, seqlen, num_heads, window*2+1)
        attn_weights = self._sliding_chunks_matmul_qk(q, k, self.one_sided_attention_window_size)
        self._mask_invalid_locations(attn_weights, self.one_sided_attention_window_size)
        if remove_from_windowed_attention_mask is not None:
            # This implementation is fast and takes very little memory because num_heads x hidden_size = 1
            # from (batch_size x seqlen) to (batch_size x seqlen x num_heads x hidden_size)
            remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(
                dim=-1
            )
            # cast to fp32/fp16 then replace 1's with -inf
            float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(
                remove_from_windowed_attention_mask, -10000.0
            )
            ones = float_mask.new_ones(size=float_mask.size())  # tensor of ones
            # diagonal mask with zeros everywhere and -inf inplace of padding
            d_mask = self._sliding_chunks_matmul_qk(ones, float_mask, self.one_sided_attention_window_size)
            attn_weights += d_mask
        assert list(attn_weights.size()) == [
            batch_size,
            seqlen,
            self.num_heads,
            self.one_sided_attention_window_size * 2 + 1,
        ]

        # the extra attention
        if extra_attention_mask is not None:
            selected_k = k.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros]
            # (batch_size, seqlen, num_heads, max_num_extra_indices_per_batch)
            selected_attn_weights = torch.einsum("blhd,bshd->blhs", (q, selected_k))
            selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000
            # concat to attn_weights
            # (batch_size, seqlen, num_heads, extra attention count + 2*window+1)
            attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1)

        attn_weights_fp32 = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
        attn_weights = attn_weights_fp32.type_as(attn_weights)

        if key_padding_mask is not None:
            # softmax sometimes inserts NaN if all positions are masked, replace them with 0
            attn_weights = torch.masked_fill(attn_weights, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0)

        attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
        v = v.view(seqlen, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
        attn = None
        if extra_attention_mask is not None:
            selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch)
            selected_v = v.new_zeros(batch_size, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros]
            # use `matmul` because `einsum` crashes sometimes with fp16
            # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
            attn = torch.matmul(
                selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)
            ).transpose(1, 2)
            attn_probs = attn_probs.narrow(
                -1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch
            ).contiguous()
        if attn is None:
            attn = self._sliding_chunks_matmul_pv(attn_probs, v, self.one_sided_attention_window_size)
        else:
            attn += self._sliding_chunks_matmul_pv(attn_probs, v, self.one_sided_attention_window_size)

        assert attn.size() == (batch_size, seqlen, self.num_heads, self.head_dim), "Unexpected size"
        attn = attn.transpose(0, 1).reshape(seqlen, batch_size, embed_dim).contiguous()

        # For this case, we'll just recompute the attention for these indices
        # and overwrite the attn tensor.
        # TODO: remove the redundant computation
        if extra_attention_mask is not None:
            selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, batch_size, embed_dim)
            selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[
                extra_attention_mask_nonzeros[::-1]
            ]

            q = self.query_global(selected_hidden_states)
            k = self.key_global(hidden_states)
            v = self.value_global(hidden_states)
            q /= math.sqrt(self.head_dim)

            q = (
                q.contiguous()
                .view(max_num_extra_indices_per_batch, batch_size * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )  # (batch_size * self.num_heads, max_num_extra_indices_per_batch, head_dim)
            k = (
                k.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
            )  # batch_size * self.num_heads, seqlen, head_dim)
            v = (
                v.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
            )  # batch_size * self.num_heads, seqlen, head_dim)
            attn_weights = torch.bmm(q, k.transpose(1, 2))
            assert list(attn_weights.size()) == [batch_size * self.num_heads, max_num_extra_indices_per_batch, seqlen]

            attn_weights = attn_weights.view(batch_size, self.num_heads, max_num_extra_indices_per_batch, seqlen)
            attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0
            if key_padding_mask is not None:
                attn_weights = attn_weights.masked_fill(key_padding_mask.unsqueeze(1).unsqueeze(2), -10000.0,)
            attn_weights = attn_weights.view(batch_size * self.num_heads, max_num_extra_indices_per_batch, seqlen)
            attn_weights_float = F.softmax(
                attn_weights, dim=-1, dtype=torch.float32
            )  # use fp32 for numerical stability
            attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
            selected_attn = torch.bmm(attn_probs, v)
            assert list(selected_attn.size()) == [
                batch_size * self.num_heads,
                max_num_extra_indices_per_batch,
                self.head_dim,
            ]

            selected_attn_4d = selected_attn.view(
                batch_size, self.num_heads, max_num_extra_indices_per_batch, self.head_dim
            )
            nonzero_selected_attn = selected_attn_4d[
                selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]
            ]
            attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(
                len(selection_padding_mask_nonzeros[0]), -1
            ).type_as(hidden_states)

        context_layer = attn.transpose(0, 1)
        if self.output_attentions:
            if extra_attention_mask is not None:
                # With global attention, return global attention probabilities only
                # batch_size x num_heads x max_num_global_attention_tokens x sequence_length
                # which is the attention weights from tokens with global attention to all tokens
                # It doesn't not return local attention
                # In case of variable number of global attantion in the rows of a batch,
                # attn_weights are padded with -10000.0 attention scores
                attn_weights = attn_weights.view(batch_size, self.num_heads, max_num_extra_indices_per_batch, seqlen)
            else:
                # without global attention, return local attention probabilities
                # batch_size x num_heads x sequence_length x window_size
                # which is the attention weights of every token attending to its neighbours
                attn_weights = attn_weights.permute(0, 2, 1, 3)
        outputs = (context_layer, attn_weights) if self.output_attentions else (context_layer,)
        return outputs


LONGFORMER_START_DOCSTRING = r"""

    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

LONGFORMER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.LonmgformerTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Mask to decide the attention given on each token, local attention, global attenion, or no attention (for padding tokens).
            Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for
            task-specific finetuning because it makes the model more flexible at representing the task. For example,
            for classification, the <s> token should be given global attention. For QA, all question tokens should also have
            global attention. Please refer to the Longformer paper https://arxiv.org/abs/2004.05150 for more details.
            Mask values selected in ``[0, 1, 2]``:
            ``0`` for no attention (padding tokens),
            ``1`` for local attention (a sliding window attention),
            ``2`` for global attention (tokens that attend to all other tokens, and all other tokens attend to them).

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
"""


@add_start_docstrings(
    "The bare Longformer Model outputting raw hidden-states without any specific head on top.",
    LONGFORMER_START_DOCSTRING,
)
class LongformerModel(RobertaModel):
    """
    This class overrides :class:`~transformers.RobertaModel` to provide the ability to process
    long sequences following the selfattention approach described in `Longformer: the Long-Document Transformer`_by
    Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer selfattention combines a local (sliding window)
    and global attention to extend to long documents without the O(n^2) increase in memory and compute.

    The selfattention module `LongformerSelfAttention` implemented here supports the combination of local and
    global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive
    and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream
    tasks. Future release will add support for autoregressive attention, but the support for dilated attention
    requires a custom CUDA kernel to be memory and compute efficient.

    .. _`Longformer: the Long-Document Transformer`:
        https://arxiv.org/abs/2004.05150

    """

    config_class = LongformerConfig
    pretrained_model_archive_map = LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)

        if isinstance(config.attention_window, int):
479
480
            assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
            assert config.attention_window > 0, "`config.attention_window` has to be positive"
Iz Beltagy's avatar
Iz Beltagy committed
481
482
483
            config.attention_window = [config.attention_window] * config.num_hidden_layers  # one value per layer
        else:
            assert len(config.attention_window) == config.num_hidden_layers, (
484
                "`len(config.attention_window)` should equal `config.num_hidden_layers`. "
Iz Beltagy's avatar
Iz Beltagy committed
485
486
487
                f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
            )

488
489
490
        for i, layer in enumerate(self.encoder.layer):
            # replace the `modeling_bert.BertSelfAttention` object with `LongformerSelfAttention`
            layer.attention.self = LongformerSelfAttention(config, layer_id=i)
Iz Beltagy's avatar
Iz Beltagy committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

        self.init_weights()

    def _pad_to_window_size(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        token_type_ids: torch.Tensor,
        position_ids: torch.Tensor,
        inputs_embeds: torch.Tensor,
        attention_window: int,
        pad_token_id: int,
    ):
        """A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""

        assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
        input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
        batch_size, seqlen = input_shape[:2]

        padding_len = (attention_window - seqlen % attention_window) % attention_window
        if padding_len > 0:
            logger.info(
                "Input ids are automatically padded from {} to {} to be a multiple of `config.attention_window`: {}".format(
                    seqlen, seqlen + padding_len, attention_window
                )
            )
            if input_ids is not None:
                input_ids = F.pad(input_ids, (0, padding_len), value=pad_token_id)
            if attention_mask is not None:
                attention_mask = F.pad(
                    attention_mask, (0, padding_len), value=False
                )  # no attention on the padding tokens
            if token_type_ids is not None:
                token_type_ids = F.pad(token_type_ids, (0, padding_len), value=0)  # pad with token_type_id = 0
            if position_ids is not None:
                # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings
                position_ids = F.pad(position_ids, (0, padding_len), value=pad_token_id)
            if inputs_embeds is not None:
                input_ids_padding = inputs_embeds.new_full(
                    (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long,
                )
                inputs_embeds_padding = self.embeddings(input_ids_padding)
                inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)

        return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds

    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        masked_lm_labels=None,
    ):
        r"""

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
        masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        import torch
        from transformers import LongformerModel, LongformerTokenizer

        model = LongformerModel.from_pretrained('longformer-base-4096')
        tokenizer = LongformerTokenizer.from_pretrained('longformer-base-4096')

        SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
        input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

        # Attention mask values -- 0: no attention, 1: local attention, 2: global attention
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention
        attention_mask[:, [1, 4, 21,]] = 2  # Set global attention based on the task. For example,
                                            # classification: the <s> token
                                            # QA: question tokens
                                            # LM: potentially on the beginning of sentences and paragraphs
        sequence_output, pooled_output = model(input_ids, attention_mask=attention_mask)
        """

        # padding
        attention_window = (
            self.config.attention_window
            if isinstance(self.config.attention_window, int)
            else max(self.config.attention_window)
        )
        padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            attention_window=attention_window,
            pad_token_id=self.config.pad_token_id,
        )

        # embed
        output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=None,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
        )

        # undo padding
        if padding_len > 0:
            # `output` has the following tensors: sequence_output, pooled_output, (hidden_states), (attentions)
            # `sequence_output`: unpad because the calling function is expecting a length == input_ids.size(1)
            # `pooled_output`: independent of the sequence length
            # `hidden_states`: mainly used for debugging and analysis, so keep the padding
            # `attentions`: mainly used for debugging and analysis, so keep the padding
            output = output[0][:, :-padding_len], *output[1:]

        return output


@add_start_docstrings("""Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING)
class LongformerForMaskedLM(BertPreTrainedModel):
    config_class = LongformerConfig
    pretrained_model_archive_map = LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)

        self.longformer = LongformerModel(config)
        self.lm_head = RobertaLMHead(config)

        self.init_weights()

    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        masked_lm_labels=None,
    ):
        r"""
        masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
        masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        import torch
        from transformers import LongformerForMaskedLM, LongformerTokenizer

        model = LongformerForMaskedLM.from_pretrained('longformer-base-4096')
        tokenizer = LongformerTokenizer.from_pretrained('longformer-base-4096')

        SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000)  # long input document
        input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0)  # batch of size 1

        attention_mask = None  # default is local attention everywhere, which is a good choice for MaskedLM
                               # check ``LongformerModel.forward`` for more details how to set `attention_mask`
        loss, prediction_scores = model(input_ids, attention_mask=attention_mask, masked_lm_labels=input_ids)
        """

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850


@add_start_docstrings(
    """Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    LONGFORMER_START_DOCSTRING,
)
class LongformerForQuestionAnswering(BertPreTrainedModel):
    config_class = LongformerConfig
    pretrained_model_archive_map = LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "longformer"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.longformer = LongformerModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def _get_question_end_index(self, input_ids):
        sep_token_indices = (input_ids == self.config.sep_token_id).nonzero()

        assert sep_token_indices.size(1) == 2, "input_ids should have two dimensions"
        assert sep_token_indices.size(0) == 3 * input_ids.size(
            0
        ), "There should be exactly three separator tokens in every sample for questions answering"

        return sep_token_indices.view(input_ids.size(0), 3, 2)[:, 0, 1]

    def _compute_global_attention_mask(self, input_ids):
        question_end_index = self._get_question_end_index(input_ids)
        question_end_index = question_end_index.unsqueeze(dim=1)  # size: batch_size x 1
        # bool attention mask with True in locations of global attention
        attention_mask = torch.arange(input_ids.size(1), device=input_ids.device)
        attention_mask = attention_mask.expand_as(input_ids) < question_end_index

        attention_mask = attention_mask.int() + 1  # from True, False to 2, 1
        return attention_mask.long()

    @add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-start scores (before SoftMax).
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    Examples::
        from transformers import LongformerTokenizer, LongformerForQuestionAnswering
        import torch

        tokenizer = LongformerTokenizer.from_pretrained(longformer-base-4096')
        model = LongformerForQuestionAnswering.from_pretrained(longformer-base-4096')

        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        encoding = tokenizer.encode_plus(question, text)
        input_ids = encoding["input_ids"]

        # default is local attention everywhere
        # the forward method will automatically set global attention on question tokens
        attention_mask = encoding["attention_mask"]

        start_scores, end_scores = model(torch.tensor([input_ids]), attention_mask=attention_mask)
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
        answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])
        """

        # set global attention on question tokens
        global_attention_mask = self._compute_global_attention_mask(input_ids)
        if attention_mask is None:
            attention_mask = global_attention_mask
        else:
            # combine global_attention_mask with attention_mask
            # global attention on question tokens, no attention on padding tokens
            attention_mask = global_attention_mask * attention_mask

        outputs = self.longformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        outputs = (start_logits, end_logits,) + outputs[2:]
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)