openai_gpt_train.py 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
    Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
    It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py

    This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle

from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam

# from analysis import rocstories as rocstories_analysis
# from datasets import rocstories
# from model_pytorch import DoubleHeadModel, load_openai_pretrained_model
# from opt import OpenAIAdam
# from text_utils import TextEncoder
# from utils import (encode_dataset, iter_data,
#                    ResultLogger, make_path)
# from loss import MultipleChoiceLossCompute

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def iter_apply(Xs, Ms, Ys):
    # fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
    logits = []
    cost = 0
    with torch.no_grad():
        dh_model.eval()
        for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
            n = len(xmb)
            XMB = torch.tensor(xmb, dtype=torch.long).to(device)
            YMB = torch.tensor(ymb, dtype=torch.long).to(device)
            MMB = torch.tensor(mmb).to(device)
            _, clf_logits = dh_model(XMB)
            clf_logits *= n
            clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
            clf_losses *= n
            logits.append(clf_logits.to("cpu").numpy())
            cost += clf_losses.sum().item()
        logits = np.concatenate(logits, 0)
    return logits, cost


def iter_predict(Xs, Ms):
    logits = []
    with torch.no_grad():
        dh_model.eval()
        for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
            n = len(xmb)
            XMB = torch.tensor(xmb, dtype=torch.long).to(device)
            MMB = torch.tensor(mmb).to(device)
            _, clf_logits = dh_model(XMB)
            logits.append(clf_logits.to("cpu").numpy())
    logits = np.concatenate(logits, 0)
    return logits


def log(save_dir, desc):
    global best_score
    print("Logging")
    tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
    va_logits, va_cost = iter_apply(vaX, vaM, vaY)
    tr_cost = tr_cost / len(trY[:n_valid])
    va_cost = va_cost / n_valid
    tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
    va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
    logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc)
    print('%d %d %.3f %.3f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc))
    if submit:
        score = va_acc
        if score > best_score:
            best_score = score
            path = os.path.join(save_dir, desc, 'best_params')
            torch.save(dh_model.state_dict(), make_path(path))


def predict(dataset, submission_dir):
    filename = filenames[dataset]
    pred_fn = pred_fns[dataset]
    label_decoder = label_decoders[dataset]
    predictions = pred_fn(iter_predict(teX, teM))
    if label_decoder is not None:
        predictions = [label_decoder[prediction] for prediction in predictions]
    path = os.path.join(submission_dir, filename)
    os.makedirs(os.path.dirname(path), exist_ok=True)
    with open(path, 'w') as f:
        f.write('{}\t{}\n'.format('index', 'prediction'))
        for i, prediction in enumerate(predictions):
            f.write('{}\t{}\n'.format(i, prediction))


def run_epoch():
    for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trYt, random_state=np.random),
                                   n_batch=n_batch_train, truncate=True, verbose=True):
        global n_updates
        dh_model.train()
        XMB = torch.tensor(xmb, dtype=torch.long).to(device)
        YMB = torch.tensor(ymb, dtype=torch.long).to(device)
        MMB = torch.tensor(mmb).to(device)
        lm_logits, clf_logits = dh_model(XMB)
        compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
        n_updates += 1
        if n_updates in [1000, 2000, 4000, 8000, 16000, 32000] and n_epochs == 0:
            log(save_dir, desc)


def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def load_rocstories_dataset(dataset_path):
    """ Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
    with open(dataset_path, encoding='utf_8') as f:
        f = csv.reader(f)
        output = []
        next(f) # skip the first line
        for line in tqdm(f):
            output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
    return output

def pre_process_dataset(encoded_dataset, max_len, start_token, delimiter_token, clf_token):
    n_batch = len(dataset)
    input_ids = np.zeros((n_batch, 2, max_len), dtype=np.int32)
    mc_token_mask = np.zeros((n_batch, 2, max_len), dtype=np.int32)
    lm_labels = np.full((n_batch, 2, max_len), -1, dtype=np.float32)
    mc_labels = np.zeros((n_batch,), dtype=np.float32)
    for i, (story, cont1, cont2, mc_label), in enumerate(encoded_dataset):
        with_cont1 = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
        with_cont2 = [start_token] + story[:max_len] + [delimiter_token] + cont2[:max_len] + [clf_token]
        xmb[i, 0, :len(with_cont1)] = with_cont1
        xmb[i, 1, :len(with_cont2)] = with_cont2
        mc_token_mask[i, 0, len(with_cont1) - 1] = 1
        lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
        lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
        mc_labels[i] = mc_label
    all_inputs = (input_ids, mc_token_mask, lm_labels, mc_labels)
    all_input_tensors = list(torch.tensor(t) for t in all_inputs)
    return all_input_tensors



if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name', type=str, default='openai-gpt',
                        help='pretrained model name')
    parser.add_argument('--data_dir', type=str, default='data/')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--num_train_epochs', type=int, default=3)
    parser.add_argument('--train_batch_size', type=int, default=8)
    parser.add_argument('--max_grad_norm', type=int, default=1)
    parser.add_argument('--learning_rate', type=float, default=6.25e-5)
    parser.add_argument('--warmup_proportion', type=float, default=0.002)
    parser.add_argument('--max_grad_norm', type=float, default=1)
    parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
    parser.add_argument('--weight_decay', type=float, default=0.01)
    parser.add_argument('--lm_coef', type=float, default=0.5)
    parser.add_argument('--n_valid', type=int, default=374)
    args = parser.parse_args()
    print(args)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device", device, "n_gpu", n_gpu)

    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
    special_tokens = ['_start_', '_delimiter_', '_classify_']
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
    special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))

    # Load the dataset and prepare the inputs
    logger.info("Encoding dataset...")
    dataset = load_rocstories_dataset(args.dataset_path)
    tokenized_dataset = list(list(tokenizer.tokenize(x) for x in instance) for instance in dataset)
    encoded_dataset = list(list(tokenizer.convert_tokens_to_ids(x) for x in instance) for instance in tokenized_dataset)

    max_input_length = max(len(story)+max(len(cont1), len(cont2))+3 for story, cont1, cont2, _ in encoded_dataset)
    max_input_length = min(max_input_length, model.config.n_positions)  # Max size of input for the pre-trained model
    max_sub_part_length = max_input_length // 2 - 2

    # Prepare dataloader
    dataset_tensors = pre_process_dataset(encoded_dataset, max_sub_part_length, *special_tokens_ids)
    train_data = TensorDataset(*dataset_tensors)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    num_train_optimization_steps = len(train_data) // args.train_batch_size
    optimizer = OpenAIAdam(optimizer_grouped_parameters,
                           lr=args.learning_rate,
                           warmup=args.warmup_proportion,
                           max_grad_norm=args.max_grad_norm,
                           weight_decay=arsg.weight_decay,
                           t_total=num_train_optimization_steps)

    if args.do_train:
        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, mc_token_mask, lm_labels, mc_labels = batch
                losses = model(input_ids, mc_token_mask, lm_labels, mc_labels)
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = OpenAIGPTDoubleHeadsModel(args.mode, state_dict=model_state_dict, num_labels=num_labels)
    model.to(device)

    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
 
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss/nb_tr_steps if args.do_train else None
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': loss}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

if __name__ == "__main__":
    main()

    n_updates = 0
    n_epochs = 0
    if dataset != 'stsb':
        trYt = trY
    if submit:
        path = os.path.join(save_dir, desc, 'best_params')
        torch.save(dh_model.state_dict(), make_path(path))
    best_score = 0
    for i in range(args.n_iter):
        print("running epoch", i)
        run_epoch()
        n_epochs += 1
        log(save_dir, desc)
    if submit:
        path = os.path.join(save_dir, desc, 'best_params')
        dh_model.load_state_dict(torch.load(path))
        predict(dataset, args.submission_dir)
        if args.analysis:
            rocstories_analysis(data_dir, os.path.join(args.submission_dir, 'ROCStories.tsv'),
                                os.path.join(log_dir, 'rocstories.jsonl'))