test_modeling_tf_xlnet.py 23.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import XLNetConfig, is_tf_available
21
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


thomwolf's avatar
thomwolf committed
27
28
29
if is_tf_available():
    import tensorflow as tf

30
31
32
33
34
35
    from transformers.modeling_tf_xlnet import (
        TFXLNetModel,
        TFXLNetLMHeadModel,
        TFXLNetForSequenceClassification,
        TFXLNetForTokenClassification,
        TFXLNetForQuestionAnsweringSimple,
36
        TFXLNetForMultipleChoice,
37
        TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
38
39
    )

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class TFXLNetModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
70
        self.num_choices = 4
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
        perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
        perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
        # perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
        target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
        target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
        # target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
Sylvain Gugger's avatar
Sylvain Gugger committed
113
            return_dict=True,
114
        )
thomwolf's avatar
thomwolf committed
115

116
        return (
117
118
119
120
121
122
123
124
125
126
127
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
128
        )
thomwolf's avatar
thomwolf committed
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def set_seed(self):
        random.seed(self.seed)
        tf.random.set_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetModel(config)

        inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
151
        result = model(inputs)
152
153

        inputs = [input_ids_1, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
154
        result = model(inputs)
155
156
157
158
159
160

        config.mem_len = 0
        model = TFXLNetModel(config)
        no_mems_outputs = model(inputs)
        self.parent.assertEqual(len(no_mems_outputs), 1)

161
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
162
        self.parent.assertListEqual(
163
164
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
165
        )
thomwolf's avatar
thomwolf committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetLMHeadModel(config)
thomwolf's avatar
thomwolf committed
182

183
        inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
184
        all_logits_1, mems_1 = model(inputs_1).to_tuple()
185

186
        inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
187
        all_logits_2, mems_2 = model(inputs_2).to_tuple()
188

189
        inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
Sylvain Gugger's avatar
Sylvain Gugger committed
190
        logits, _ = model(inputs_3).to_tuple()
191

192
        self.parent.assertEqual(all_logits_1.shape, (self.batch_size, self.seq_length, self.vocab_size))
193
        self.parent.assertListEqual(
194
195
            [mem.shape for mem in mems_1],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
196
        )
197
        self.parent.assertEqual(all_logits_2.shape, (self.batch_size, self.seq_length, self.vocab_size))
198
        self.parent.assertListEqual(
199
200
            [mem.shape for mem in mems_2],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
201
        )
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
220
        result = model(inputs)
221

222
223
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
224
        self.parent.assertListEqual(
225
226
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
227
        )
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetForSequenceClassification(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
245
        result = model(input_ids_1)
246

247
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
248
        self.parent.assertListEqual(
249
250
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
251
        )
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def create_and_check_xlnet_for_token_classification(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        config.num_labels = input_ids_1.shape[1]
        model = TFXLNetForTokenClassification(config)
        inputs = {
            "input_ids": input_ids_1,
            "attention_mask": input_mask,
            # 'token_type_ids': token_type_ids
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
274
        result = model(inputs)
275
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, config.num_labels))
276
        self.parent.assertListEqual(
277
278
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
279
        )
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def create_and_check_xlnet_for_multiple_choice(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        config.num_choices = self.num_choices
        model = TFXLNetForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids_1, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(segment_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
305
        result = model(inputs)
Julien Plu's avatar
Julien Plu committed
306

307
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Julien Plu's avatar
Julien Plu committed
308
        self.parent.assertListEqual(
309
310
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size * self.num_choices, self.hidden_size)] * self.num_hidden_layers,
Julien Plu's avatar
Julien Plu committed
311
        )
312

313
314
315
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
316
317
318
319
320
321
322
323
324
325
326
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
327
328
329
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict
330
331


332
333
@require_tf
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
334

335
336
337
338
339
340
341
    all_model_classes = (
        (
            TFXLNetModel,
            TFXLNetLMHeadModel,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetForQuestionAnsweringSimple,
342
            TFXLNetForMultipleChoice,
343
344
345
346
347
348
349
350
        )
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFXLNetLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
    test_pruning = False
thomwolf's avatar
thomwolf committed
351
352

    def setUp(self):
353
        self.model_tester = TFXLNetModelTester(self)
thomwolf's avatar
thomwolf committed
354
355
356
357
358
359
360
361
362
363
364
365
366
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
367
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
368
369
370
371
372
373

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

374
375
376
377
    def test_xlnet_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)

thomwolf's avatar
thomwolf committed
378
379
380
381
382
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)

383
384
385
386
    def test_xlnet_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_multiple_choice(*config_and_inputs)

387
    @slow
thomwolf's avatar
thomwolf committed
388
    def test_model_from_pretrained(self):
389
        for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
390
            model = TFXLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
391
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
392
393


394
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = TFXLNetLMHeadModel.from_pretrained("xlnet-base-cased")
        input_ids = tf.convert_to_tensor(
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
            ],
            dtype=tf.int32,
        )
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
741
742
743
            12943,
            4354,
            153,
patrickvonplaten's avatar
patrickvonplaten committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
            27,
            442,
            22,
            2771,
            4901,
            9,
            69,
            27,
            50,
            551,
            22,
            2771,
            4901,
            19,
            21,
            45,
            668,
            21,
            18,
            416,
            41,
            1499,
            22,
            755,
            18,
            14285,
            9,
            12943,
            4354,
            153,
            27,
            1499,
            22,
            642,
            22,
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
        #  <sep><cls>, Rasputin is asked to perform magic.
        #  He is not able to perform magic, and his father and
        # the men are forced to leave the monastery. Rasputin is forced to return to

        output_ids = model.generate(input_ids, max_length=200, do_sample=False)

794
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)