test_modeling_tf_xlnet.py 24.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17

import random
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import XLNetConfig, is_tf_available
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
24
from .utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


thomwolf's avatar
thomwolf committed
27
28
29
if is_tf_available():
    import tensorflow as tf

30
31
32
33
34
35
    from transformers.modeling_tf_xlnet import (
        TFXLNetModel,
        TFXLNetLMHeadModel,
        TFXLNetForSequenceClassification,
        TFXLNetForTokenClassification,
        TFXLNetForQuestionAnsweringSimple,
36
        TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
37
38
    )

39
40

@require_tf
41
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
42

43
44
45
46
47
48
49
50
51
52
53
    all_model_classes = (
        (
            TFXLNetModel,
            TFXLNetLMHeadModel,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetForQuestionAnsweringSimple,
        )
        if is_tf_available()
        else ()
    )
54
55
56
    all_generative_model_classes = (
        (TFXLNetLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
57
58
59
    test_pruning = False

    class TFXLNetModelTester(object):
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=10,
            clamp_len=-1,
            reuse_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            num_attention_heads=4,
            d_inner=128,
            num_hidden_layers=5,
            type_sequence_label_size=2,
            untie_r=True,
            bi_data=False,
            same_length=False,
            initializer_range=0.05,
            seed=1,
            type_vocab_size=2,
83
84
85
            bos_token_id=1,
            eos_token_id=2,
            pad_token_id=5,
86
        ):
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            # self.key_len = seq_length + mem_len
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.num_attention_heads = num_attention_heads
            self.d_inner = d_inner
            self.num_hidden_layers = num_hidden_layers
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
            self.initializer_range = initializer_range
            self.seed = seed
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
109
110
111
            self.bos_token_id = bos_token_id
            self.pad_token_id = pad_token_id
            self.eos_token_id = eos_token_id
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
120
121
122
123

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
            input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)

            input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
            perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
            perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
            perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
            # perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
thomwolf's avatar
thomwolf committed
124
125
            target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
            target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
thomwolf's avatar
thomwolf committed
126
127
128
129
130
131
132
133
134
135
136
137
            target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
            # target_mapping[:, 0, -1] = 1.0  # predict last token

            sequence_labels = None
            lm_labels = None
            is_impossible_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

            config = XLNetConfig(
thomwolf's avatar
thomwolf committed
138
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145
146
147
148
149
                d_model=self.hidden_size,
                n_head=self.num_attention_heads,
                d_inner=self.d_inner,
                n_layer=self.num_hidden_layers,
                untie_r=self.untie_r,
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
                bi_data=self.bi_data,
                initializer_range=self.initializer_range,
150
                num_labels=self.type_sequence_label_size,
151
152
153
                bos_token_id=self.bos_token_id,
                pad_token_id=self.pad_token_id,
                eos_token_id=self.eos_token_id,
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            )

            return (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
            )
thomwolf's avatar
thomwolf committed
169
170
171
172
173

        def set_seed(self):
            random.seed(self.seed)
            tf.random.set_seed(self.seed)

174
175
176
177
178
179
180
181
182
183
184
185
186
187
        def create_and_check_xlnet_base_model(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
thomwolf's avatar
thomwolf committed
188
189
            model = TFXLNetModel(config)

190
            inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
thomwolf's avatar
thomwolf committed
191
192
193

            _, _ = model(inputs)

thomwolf's avatar
thomwolf committed
194
            inputs = [input_ids_1, input_mask]
thomwolf's avatar
thomwolf committed
195
196
197
198

            outputs, mems_1 = model(inputs)

            result = {
thomwolf's avatar
thomwolf committed
199
                "mems_1": [mem.numpy() for mem in mems_1],
thomwolf's avatar
thomwolf committed
200
201
202
                "outputs": outputs.numpy(),
            }

thomwolf's avatar
thomwolf committed
203
204
            config.mem_len = 0
            model = TFXLNetModel(config)
205
206
207
            no_mems_outputs = model(inputs)
            self.parent.assertEqual(len(no_mems_outputs), 1)

thomwolf's avatar
thomwolf committed
208
            self.parent.assertListEqual(
209
210
                list(result["outputs"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
211
212
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_lm_head(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
230
231
            model = TFXLNetLMHeadModel(config)

232
            inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
233
234
235

            all_logits_1, mems_1 = model(inputs_1)

236
            inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
237
238
239

            all_logits_2, mems_2 = model(inputs_2)

240
            inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
241
242
243
244
245
246
247
248
249
250
251

            logits, _ = model(inputs_3)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "all_logits_1": all_logits_1.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
                "all_logits_2": all_logits_2.numpy(),
            }

            self.parent.assertListEqual(
252
253
                list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
254
255
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
256
257
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
258
259

            self.parent.assertListEqual(
260
261
                list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
262
263
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_qa(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
281
282
            model = TFXLNetForQuestionAnsweringSimple(config)

283
            inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
284
285
286
287
288
289
290
291
            start_logits, end_logits, mems = model(inputs)

            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
                "mems": [m.numpy() for m in mems],
            }

292
293
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
294
295
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems"]),
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_sequence_classif(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
313
314
315
316
317
318
319
320
321
            model = TFXLNetForSequenceClassification(config)

            logits, mems_1 = model(input_ids_1)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "logits": logits.numpy(),
            }

322
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
323
324
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )

        def create_and_check_xlnet_for_token_classification(
            self,
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
        ):
342
343
            config.num_labels = input_ids_1.shape[1]
            model = TFXLNetForTokenClassification(config)
344
345
346
347
348
            inputs = {
                "input_ids": input_ids_1,
                "attention_mask": input_mask,
                # 'token_type_ids': token_type_ids
            }
349
350
351
352
353
354
            logits, mems_1 = model(inputs)
            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
355
356
                list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
            )
357
358
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
359
360
                [[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
361

thomwolf's avatar
thomwolf committed
362
363
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            (
                config,
                input_ids_1,
                input_ids_2,
                input_ids_q,
                perm_mask,
                input_mask,
                target_mapping,
                segment_ids,
                lm_labels,
                sequence_labels,
                is_impossible_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids_1}
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFXLNetModelTest.TFXLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
395
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

402
403
404
405
    def test_xlnet_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)

thomwolf's avatar
thomwolf committed
406
407
408
409
410
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)

411
    @slow
thomwolf's avatar
thomwolf committed
412
    def test_model_from_pretrained(self):
413
        for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
414
            model = TFXLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
415
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
416
417


418
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = TFXLNetLMHeadModel.from_pretrained("xlnet-base-cased")
        input_ids = tf.convert_to_tensor(
            [
                [
                    67,
                    2840,
                    19,
                    18,
                    1484,
                    20,
                    965,
                    29077,
                    8719,
                    1273,
                    21,
                    45,
                    273,
                    17,
                    10,
                    15048,
                    28,
                    27511,
                    21,
                    4185,
                    11,
                    41,
                    2444,
                    9,
                    32,
                    1025,
                    20,
                    8719,
                    26,
                    23,
                    673,
                    966,
                    19,
                    29077,
                    20643,
                    27511,
                    20822,
                    20643,
                    19,
                    17,
                    6616,
                    17511,
                    18,
                    8978,
                    20,
                    18,
                    777,
                    9,
                    19233,
                    1527,
                    17669,
                    19,
                    24,
                    673,
                    17,
                    28756,
                    150,
                    12943,
                    4354,
                    153,
                    27,
                    442,
                    37,
                    45,
                    668,
                    21,
                    24,
                    256,
                    20,
                    416,
                    22,
                    2771,
                    4901,
                    9,
                    12943,
                    4354,
                    153,
                    51,
                    24,
                    3004,
                    21,
                    28142,
                    23,
                    65,
                    20,
                    18,
                    416,
                    34,
                    24,
                    2958,
                    22947,
                    9,
                    1177,
                    45,
                    668,
                    3097,
                    13768,
                    23,
                    103,
                    28,
                    441,
                    148,
                    48,
                    20522,
                    19,
                    12943,
                    4354,
                    153,
                    12860,
                    34,
                    18,
                    326,
                    27,
                    17492,
                    684,
                    21,
                    6709,
                    9,
                    8585,
                    123,
                    266,
                    19,
                    12943,
                    4354,
                    153,
                    6872,
                    24,
                    3004,
                    20,
                    18,
                    9225,
                    2198,
                    19,
                    12717,
                    103,
                    22,
                    401,
                    24,
                    6348,
                    9,
                    12943,
                    4354,
                    153,
                    1068,
                    2768,
                    2286,
                    19,
                    33,
                    104,
                    19,
                    176,
                    24,
                    9313,
                    19,
                    20086,
                    28,
                    45,
                    10292,
                    9,
                    4,
                    3,
                ]
            ],
            dtype=tf.int32,
        )
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

        expected_output_ids = [
            67,
            2840,
            19,
            18,
            1484,
            20,
            965,
            29077,
            8719,
            1273,
            21,
            45,
            273,
            17,
            10,
            15048,
            28,
            27511,
            21,
            4185,
            11,
            41,
            2444,
            9,
            32,
            1025,
            20,
            8719,
            26,
            23,
            673,
            966,
            19,
            29077,
            20643,
            27511,
            20822,
            20643,
            19,
            17,
            6616,
            17511,
            18,
            8978,
            20,
            18,
            777,
            9,
            19233,
            1527,
            17669,
            19,
            24,
            673,
            17,
            28756,
            150,
            12943,
            4354,
            153,
            27,
            442,
            37,
            45,
            668,
            21,
            24,
            256,
            20,
            416,
            22,
            2771,
            4901,
            9,
            12943,
            4354,
            153,
            51,
            24,
            3004,
            21,
            28142,
            23,
            65,
            20,
            18,
            416,
            34,
            24,
            2958,
            22947,
            9,
            1177,
            45,
            668,
            3097,
            13768,
            23,
            103,
            28,
            441,
            148,
            48,
            20522,
            19,
            12943,
            4354,
            153,
            12860,
            34,
            18,
            326,
            27,
            17492,
            684,
            21,
            6709,
            9,
            8585,
            123,
            266,
            19,
            12943,
            4354,
            153,
            6872,
            24,
            3004,
            20,
            18,
            9225,
            2198,
            19,
            12717,
            103,
            22,
            401,
            24,
            6348,
            9,
            12943,
            4354,
            153,
            1068,
            2768,
            2286,
            19,
            33,
            104,
            19,
            176,
            24,
            9313,
            19,
            20086,
            28,
            45,
            10292,
            9,
            4,
            3,
            19,
patrickvonplaten's avatar
patrickvonplaten committed
765
766
767
            12943,
            4354,
            153,
patrickvonplaten's avatar
patrickvonplaten committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
            27,
            442,
            22,
            2771,
            4901,
            9,
            69,
            27,
            50,
            551,
            22,
            2771,
            4901,
            19,
            21,
            45,
            668,
            21,
            18,
            416,
            41,
            1499,
            22,
            755,
            18,
            14285,
            9,
            12943,
            4354,
            153,
            27,
            1499,
            22,
            642,
            22,
        ]
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
        #  <sep><cls>, Rasputin is asked to perform magic.
        #  He is not able to perform magic, and his father and
        # the men are forced to leave the monastery. Rasputin is forced to return to

        output_ids = model.generate(input_ids, max_length=200, do_sample=False)

818
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)