modeling_gpt2.py 35.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
20
21
22
23
24
25
26
27
28
29
30
31
32
import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
34
                          PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
40
                                "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
41
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
thomwolf's avatar
thomwolf committed
42
                                 "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
thomwolf's avatar
thomwolf committed
43

44
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
52
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
53
54
55
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(gpt2_checkpoint_path)
thomwolf's avatar
thomwolf committed
56
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
thomwolf's avatar
thomwolf committed
57
58
59
60
61
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
62
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
63
64
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
thomwolf's avatar
thomwolf committed
65
        arrays.append(array.squeeze())
thomwolf's avatar
thomwolf committed
66
67

    for name, array in zip(names, arrays):
thomwolf's avatar
thomwolf committed
68
        name = name[6:]  # skip "model/"
thomwolf's avatar
thomwolf committed
69
70
71
        name = name.split('/')
        pointer = model
        for m_name in name:
thomwolf's avatar
thomwolf committed
72
73
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
            else:
                l = [m_name]
            if l[0] == 'w' or l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
thomwolf's avatar
thomwolf committed
80
81
82
            elif l[0] == 'wpe' or l[0] == 'wte':
                pointer = getattr(pointer, l[0])
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
93
        logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


102
class GPT2Config(PretrainedConfig):
thomwolf's avatar
thomwolf committed
103
104
    """Configuration class to store the configuration of a `GPT2Model`.
    """
105
    pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
106
107
108

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
109
        vocab_size_or_config_json_file=50257,
thomwolf's avatar
thomwolf committed
110
        n_special=0,
thomwolf's avatar
thomwolf committed
111
112
113
114
115
        n_positions=1024,
        n_ctx=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
116
117
118
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
thomwolf's avatar
thomwolf committed
119
120
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
121
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
122
123

        num_labels=1,
thomwolf's avatar
thomwolf committed
124
125
126
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
127
        summary_proj_to_labels=True,
128
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
129
        **kwargs
thomwolf's avatar
thomwolf committed
130
131
132
133
134
    ):
        """Constructs GPT2Config.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
thomwolf's avatar
thomwolf committed
135
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
136
137
138
139
140
141
142
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
143
144
145
146
147
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
thomwolf's avatar
thomwolf committed
148
149
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
150
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
151
        """
thomwolf's avatar
thomwolf committed
152
153
        super(GPT2Config, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
162
            self.n_special = n_special
thomwolf's avatar
thomwolf committed
163
164
165
166
167
            self.n_ctx = n_ctx
            self.n_positions = n_positions
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
168
169
170
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
thomwolf's avatar
thomwolf committed
171
172
            self.layer_norm_epsilon = layer_norm_epsilon
            self.initializer_range = initializer_range
173
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
174
175

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
176
177
178
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
179
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
180
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
181
182
183
184
185
186
        else:
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )

thomwolf's avatar
thomwolf committed
187
188
189
190
    @property
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special

thomwolf's avatar
thomwolf committed
191
192
193
194
195
196
197
198
199
200
201
202
203
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer


thomwolf's avatar
thomwolf committed
204
205

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
206
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
207
        super(Attention, self).__init__()
thomwolf's avatar
thomwolf committed
208
209
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
217

thomwolf's avatar
thomwolf committed
218
219
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
220
221
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
222

223
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
224
225
        if len(heads) == 0:
            return
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
240
241
242
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
243
244
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
245
        w = w * b - 1e4 * (1 - b)
thomwolf's avatar
thomwolf committed
246
247

        w = nn.Softmax(dim=-1)(w)
248
        w = self.attn_dropout(w)
249
250
251
252
253

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
254
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
255
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
256
257
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
258
259
260
261
262
263
264
265
266
267

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
thomwolf's avatar
thomwolf committed
268
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
thomwolf's avatar
thomwolf committed
269
        else:
thomwolf's avatar
thomwolf committed
270
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
thomwolf's avatar
thomwolf committed
271

272
    def forward(self, x, layer_past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
273
274
275
276
277
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
thomwolf's avatar
thomwolf committed
278
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
279
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
thomwolf's avatar
thomwolf committed
280
            key = torch.cat((past_key, key), dim=-1)
thomwolf's avatar
thomwolf committed
281
            value = torch.cat((past_value, value), dim=-2)
thomwolf's avatar
thomwolf committed
282
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
283

thomwolf's avatar
thomwolf committed
284
285
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
286

thomwolf's avatar
thomwolf committed
287
288
        a = self.merge_heads(a)
        a = self.c_proj(a)
289
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
290
291
292

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)
thomwolf's avatar
thomwolf committed
293
294
295
296
297
298
299
300
301


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu
302
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
303
304
305
306

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
307
        return self.dropout(h2)
thomwolf's avatar
thomwolf committed
308
309
310


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
311
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
312
313
314
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
315
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
316
317
318
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

319
320
    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
321
322
        a = output_attn[0]  # output_attn: a, present, (attentions)

thomwolf's avatar
thomwolf committed
323
        x = x + a
thomwolf's avatar
thomwolf committed
324
        m = self.mlp(self.ln_2(x))
thomwolf's avatar
thomwolf committed
325
        x = x + m
thomwolf's avatar
thomwolf committed
326
327
328

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336


class GPT2LMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
337
338
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
339
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
340
341
342
343
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.set_embeddings_weights(model_embeddings_weights)

344
345
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
346
        # Export to TorchScript can't handle parameter sharing so we are cloning them.
347
348
349
350
        if self.torchscript:
            self.decoder.weight = nn.Parameter(model_embeddings_weights.clone())
        else:
            self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
351
352
353

    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
354
355
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
356
357
358
        return lm_logits


359
class GPT2PreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
360
361
362
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
363
    config_class = GPT2Config
364
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
365
366
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"
thomwolf's avatar
thomwolf committed
367

368
369
370
    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
371
372
373
    def init_weights(self, module):
        """ Initialize the weights.
        """
374
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
375
376
377
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
378
379
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
380
381
382
383
384
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    @classmethod
VictorSanh's avatar
VictorSanh committed
385
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
386
387
388
389
390
391
392
        """
        Instantiate a GPT2PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
Joel Grus's avatar
Joel Grus committed
393
                    . `gpt2`
thomwolf's avatar
thomwolf committed
394
395
396
397
                - a path or url to a pretrained model archive containing:
                    . `gpt2_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
                - a path or url to a pretrained model archive containing:
Joel Grus's avatar
Joel Grus committed
398
                    . `gpt2_config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
399
400
401
                    . a TensorFlow checkpoint with trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
Joel Grus's avatar
Joel Grus committed
402
            state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
VictorSanh's avatar
VictorSanh committed
403
            *inputs, **kwargs: additional input for the specific GPT2 class
thomwolf's avatar
thomwolf committed
404
        """
thomwolf's avatar
thomwolf committed
405
406
407
        num_special_tokens = kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
408

thomwolf's avatar
thomwolf committed
409
410
        # Add additional embeddings for special tokens if needed
        # This step also make sure we are still sharing the output and input embeddings after loading weights
411
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
        return model


class GPT2Model(GPT2PreTrainedModel):
    """OpenAI GPT-2 model ("Language Models are Unsupervised Multitask Learners").

thomwolf's avatar
thomwolf committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    GPT-2 use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1]                  ______________________

    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.

thomwolf's avatar
thomwolf committed
435
    Params:
436
437
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444
445
446
447
448

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
Joel Grus's avatar
Joel Grus committed
449
450
451
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
452
453
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
454

Joel Grus's avatar
Joel Grus committed
455
    Outputs a tuple consisting of:
456
457
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
thomwolf's avatar
thomwolf committed
458
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
459
460
        `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
            torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2Model(config)
Joel Grus's avatar
Joel Grus committed
470
    hidden_states, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
471
472
473
    ```
    """

thomwolf's avatar
thomwolf committed
474
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
475
        super(GPT2Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
476
477
478
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
479
        self.wte = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
thomwolf's avatar
thomwolf committed
480
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
481
        self.drop = nn.Dropout(config.embd_pdrop)
482
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
483
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
484
485
486

        self.apply(self.init_weights)

487
    def set_num_special_tokens(self, num_special_tokens=None):
thomwolf's avatar
thomwolf committed
488
        " Update input embeddings with new embedding matrice if needed "
489
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
thomwolf's avatar
thomwolf committed
490
491
492
493
494
495
496
497
498
499
500
            return
        # Update config
        self.config.n_special = num_special_tokens
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
        old_embed = self.wte
        self.wte = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
        self.wte.to(old_embed.weight.device)
        self.init_weights(self.wte)
        # Copy word embeddings from the previous weights
        self.wte.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]

thomwolf's avatar
thomwolf committed
501
    def _prune_heads(self, heads_to_prune):
502
503
504
505
506
507
508
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
509
        if past is None:
thomwolf's avatar
thomwolf committed
510
            past_length = 0
thomwolf's avatar
thomwolf committed
511
            past = [None] * len(self.h)
thomwolf's avatar
thomwolf committed
512
        else:
thomwolf's avatar
thomwolf committed
513
            past_length = past[0][0].size(-2)
thomwolf's avatar
thomwolf committed
514
515
516
517
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

518
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
519
        # 1.0 in head_mask indicate we keep the head
520
        # attention_probs has shape bsz x n_heads x N x N
521
        # head_mask has shape n_layer x batch x n_heads x N x N
522
523
        if head_mask is not None:
            if head_mask.dim() == 1:
524
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
525
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
526
            elif head_mask.dim() == 2:
527
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
528
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
529
530
        else:
            head_mask = [None] * self.config.n_layer
531

thomwolf's avatar
thomwolf committed
532
533
534
535
536
537
538
539
540
541
542
543
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
544
545
        hidden_states = self.drop(hidden_states)

546
547
        output_shape = input_shape + (hidden_states.size(-1),)

548
        presents = ()
thomwolf's avatar
thomwolf committed
549
        all_attentions = []
550
        all_hidden_states = ()
551
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
thomwolf's avatar
thomwolf committed
552
            if self.output_hidden_states:
553
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
554

555
            outputs = block(hidden_states, layer_past, head_mask[i])
thomwolf's avatar
thomwolf committed
556
            hidden_states, present = outputs[:2]
557
            presents = presents + (present,)
thomwolf's avatar
thomwolf committed
558
559
560
561

            if self.output_attentions:
                all_attentions.append(outputs[2])

thomwolf's avatar
thomwolf committed
562
        hidden_states = self.ln_f(hidden_states)
563

thomwolf's avatar
thomwolf committed
564
565
566
        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
567
            all_hidden_states = all_hidden_states + (hidden_states,)
thomwolf's avatar
thomwolf committed
568

569
        outputs = (hidden_states, presents)
thomwolf's avatar
thomwolf committed
570
        if self.output_hidden_states:
571
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
572
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
573
574
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
575
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
576
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
577
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
578
579
580
581
582
583


class GPT2LMHeadModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling head ("Language Models are Unsupervised Multitask Learners").

    Params:
584
585
586
587
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
Joel Grus's avatar
Joel Grus committed
602
603
604
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
605
606
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
607
608
609
610

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
Joel Grus's avatar
Joel Grus committed
611
        else a tuple:
thomwolf's avatar
thomwolf committed
612
613
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
                (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
Joel Grus's avatar
Joel Grus committed
614
615
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
616
617
618
619
620
621
622
623
624

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_gpt2.GPT2Config()

    model = modeling_gpt2.GPT2LMHeadModel(config)
Joel Grus's avatar
Joel Grus committed
625
    lm_logits, presents = model(input_ids)
thomwolf's avatar
thomwolf committed
626
627
628
    ```
    """

thomwolf's avatar
thomwolf committed
629
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
630
        super(GPT2LMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
631
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
632
633
634
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
        self.apply(self.init_weights)

635
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
636
637
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
638
        """
639
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
640
        self.transformer.set_num_special_tokens(num_special_tokens)
641
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
642

643
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
644
645
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
646

thomwolf's avatar
thomwolf committed
647
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
648

649
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
650
        if lm_labels is not None:
651
            # Shift so that tokens < n predict n
652
653
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
654
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
655
            loss_fct = CrossEntropyLoss(ignore_index=-1)
656
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
657
                            shift_labels.view(-1))
658
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
659
660

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
661
662
663
664
665
666


class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    """OpenAI GPT-2 model with a Language Modeling and a Multiple Choice head ("Language Models are Unsupervised Multitask Learners").

    Params:
667
668
669
670
        `config`: a GPT2Config class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, config.vocab_size[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [0, config.n_positions - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., config.vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., config.vocab_size]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
Joel Grus's avatar
Joel Grus committed
689
690
691
        `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states
            (key and values in the attention blocks) to speed up sequential decoding
            (this is the presents output of the model, cf. below).
692
693
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
694
695
696
697
698
699
700

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Joel Grus's avatar
Joel Grus committed
701
702
            `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as
                torch.FloatTensors. They can be reused to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
703
704
705
706
707
708
709
710
711

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)

    config = modeling_gpt2.GPT2Config()

VictorSanh's avatar
VictorSanh committed
712
    model = modeling_gpt2.GPT2DoubleHeadsModel(config)
Joel Grus's avatar
Joel Grus committed
713
    lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
thomwolf's avatar
thomwolf committed
714
715
716
    ```
    """

thomwolf's avatar
thomwolf committed
717
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
718
        super(GPT2DoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
719
        self.transformer = GPT2Model(config)
thomwolf's avatar
thomwolf committed
720
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
thomwolf's avatar
thomwolf committed
721
        self.multiple_choice_head = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
722

thomwolf's avatar
thomwolf committed
723
724
        self.apply(self.init_weights)

725
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
thomwolf's avatar
thomwolf committed
726
727
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
728
        """
729
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
730
        self.transformer.set_num_special_tokens(num_special_tokens)
731
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
732

thomwolf's avatar
thomwolf committed
733
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
734
                position_ids=None, past=None, head_mask=None):
thomwolf's avatar
thomwolf committed
735
736
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, past, head_mask)
        hidden_states = transformer_outputs[0]
737

thomwolf's avatar
thomwolf committed
738
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
739
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
740

741
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
742
743
744
745
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
746
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
747
        if lm_labels is not None:
748
749
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
750
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
751
752
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
753
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
754
755

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)