test_retrieval_rag.py 15.4 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch

import numpy as np
from datasets import Dataset

12
from transformers import is_faiss_available
Sylvain Gugger's avatar
Sylvain Gugger committed
13
14
15
16
17
18
19
20
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
21
22
23
24
25
26
27
from transformers.testing_utils import (
    require_datasets,
    require_faiss,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
)
Ola Piktus's avatar
Ola Piktus committed
28
29


30
31
32
33
if is_faiss_available():
    import faiss


Ola Piktus's avatar
Ola Piktus committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
@require_faiss
@require_datasets
class RagRetrieverTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.retrieval_vector_size = 8

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    def get_bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

110
    def get_dummy_dataset(self):
Ola Piktus's avatar
Ola Piktus committed
111
112
113
114
115
116
117
118
119
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
120
121
122
123
        return dataset

    def get_dummy_canonical_hf_index_retriever(self):
        dataset = self.get_dummy_dataset()
Ola Piktus's avatar
Ola Piktus committed
124
125
126
127
128
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
129
        with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
Ola Piktus's avatar
Ola Piktus committed
130
131
132
133
134
135
136
137
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        return retriever

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def get_dummy_custom_hf_index_retriever(self, from_disk: bool):
        dataset = self.get_dummy_dataset()
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
            index_name="custom",
        )
        if from_disk:
            config.passages_path = os.path.join(self.tmpdirname, "dataset")
            config.index_path = os.path.join(self.tmpdirname, "index.faiss")
            dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
            dataset.drop_index("embeddings")
            dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
            del dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        else:
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
                index=CustomHFIndex(config.retrieval_vector_size, dataset),
            )
        return retriever

Ola Piktus's avatar
Ola Piktus committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def get_dummy_legacy_index_retriever(self):
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)

        index_file_name = os.path.join(self.tmpdirname, "hf_bert_base.hnswSQ8_correct_phi_128.c_index")
        dataset.save_faiss_index("embeddings", index_file_name + ".index.dpr")
        pickle.dump(dataset["id"], open(index_file_name + ".index_meta.dpr", "wb"))

        passages_file_name = os.path.join(self.tmpdirname, "psgs_w100.tsv.pkl")
        passages = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
        pickle.dump(passages, open(passages_file_name, "wb"))

        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
            index_name="legacy",
            index_path=self.tmpdirname,
        )
        retriever = RagRetriever(
            config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer()
        )
        return retriever

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_canonical_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_canonical_hf_index_retriever()
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])

    def test_canonical_hf_index_retriever_save_and_from_pretrained(self):
        retriever = self.get_dummy_canonical_hf_index_retriever()
        with tempfile.TemporaryDirectory() as tmp_dirname:
Sylvain Gugger's avatar
Sylvain Gugger committed
216
            with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
                mock_load_dataset.return_value = self.get_dummy_dataset()
                retriever.save_pretrained(tmp_dirname)
                retriever = RagRetriever.from_pretrained(tmp_dirname)
                self.assertIsInstance(retriever, RagRetriever)
                hidden_states = np.array(
                    [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
                )
                out = retriever.retrieve(hidden_states, n_docs=1)
                self.assertTrue(out is not None)

    def test_custom_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False)
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])

    def test_custom_hf_index_retriever_save_and_from_pretrained(self):
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False)
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)
            retriever = RagRetriever.from_pretrained(tmp_dirname)
            self.assertIsInstance(retriever, RagRetriever)
            hidden_states = np.array(
                [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
            )
            out = retriever.retrieve(hidden_states, n_docs=1)
            self.assertTrue(out is not None)

    def test_custom_hf_index_retriever_retrieve_from_disk(self):
Ola Piktus's avatar
Ola Piktus committed
255
        n_docs = 1
256
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True)
Ola Piktus's avatar
Ola Piktus committed
257
258
259
260
261
262
263
264
265
266
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
267
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
Ola Piktus's avatar
Ola Piktus committed
268

269
270
    def test_custom_hf_index_retriever_save_and_from_pretrained_from_disk(self):
        retriever = self.get_dummy_custom_hf_index_retriever(from_disk=True)
271
272
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)
273
274
275
276
277
278
279
            retriever = RagRetriever.from_pretrained(tmp_dirname)
            self.assertIsInstance(retriever, RagRetriever)
            hidden_states = np.array(
                [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
            )
            out = retriever.retrieve(hidden_states, n_docs=1)
            self.assertTrue(out is not None)
280

Ola Piktus's avatar
Ola Piktus committed
281
282
283
284
285
286
287
288
289
290
291
292
293
    def test_legacy_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_legacy_index_retriever()
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["text", "title"])
        self.assertEqual(len(doc_dicts[0]["text"]), n_docs)
        self.assertEqual(doc_dicts[0]["text"][0], "bar")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["text"][0], "foo")  # max inner product is reached with first doc
294
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
Ola Piktus's avatar
Ola Piktus committed
295

296
297
298
299
300
301
302
303
304
305
306
307
    def test_legacy_hf_index_retriever_save_and_from_pretrained(self):
        retriever = self.get_dummy_legacy_index_retriever()
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)
            retriever = RagRetriever.from_pretrained(tmp_dirname)
            self.assertIsInstance(retriever, RagRetriever)
            hidden_states = np.array(
                [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
            )
            out = retriever.retrieve(hidden_states, n_docs=1)
            self.assertTrue(out is not None)

Ola Piktus's avatar
Ola Piktus committed
308
    @require_torch
309
310
    @require_tokenizers
    @require_sentencepiece
Ola Piktus's avatar
Ola Piktus committed
311
312
313
314
    def test_hf_index_retriever_call(self):
        import torch

        n_docs = 1
315
        retriever = self.get_dummy_canonical_hf_index_retriever()
Ola Piktus's avatar
Ola Piktus committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        question_input_ids = [[5, 7], [10, 11]]
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs)
        context_input_ids, context_attention_mask, retrieved_doc_embeds = (
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, list)
        self.assertIsInstance(context_attention_mask, list)
        self.assertIsInstance(retrieved_doc_embeds, np.ndarray)

        out = retriever(
            question_input_ids,
            hidden_states,
            prefix=retriever.config.generator.prefix,
            n_docs=n_docs,
            return_tensors="pt",
        )
        context_input_ids, context_attention_mask, retrieved_doc_embeds, doc_ids = (  # noqa: F841
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
            out["doc_ids"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, torch.Tensor)
        self.assertIsInstance(context_attention_mask, torch.Tensor)
        self.assertIsInstance(retrieved_doc_embeds, torch.Tensor)