test_retrieval_rag.py 9.32 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch

import numpy as np
from datasets import Dataset

import faiss
from transformers.configuration_bart import BartConfig
from transformers.configuration_dpr import DPRConfig
from transformers.configuration_rag import RagConfig
from transformers.retrieval_rag import RagRetriever
from transformers.testing_utils import require_datasets, require_faiss, require_torch
from transformers.tokenization_bart import BartTokenizer
from transformers.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.tokenization_dpr import DPRQuestionEncoderTokenizer
from transformers.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES


@require_faiss
@require_datasets
class RagRetrieverTest(TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        self.retrieval_vector_size = 8

        # DPR tok
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
        os.makedirs(dpr_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

        # BART tok
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
        os.makedirs(bart_tokenizer_path, exist_ok=True)
        self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
        return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))

    def get_bart_tokenizer(self) -> BartTokenizer:
        return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def get_dummy_hf_index_retriever(self):
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
        )
        with patch("transformers.retrieval_rag.load_dataset") as mock_load_dataset:
            mock_load_dataset.return_value = dataset
            retriever = RagRetriever(
                config,
                question_encoder_tokenizer=self.get_dpr_tokenizer(),
                generator_tokenizer=self.get_bart_tokenizer(),
            )
        return retriever

    def get_dummy_legacy_index_retriever(self):
        dataset = Dataset.from_dict(
            {
                "id": ["0", "1"],
                "text": ["foo", "bar"],
                "title": ["Foo", "Bar"],
                "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)],
            }
        )
        dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)

        index_file_name = os.path.join(self.tmpdirname, "hf_bert_base.hnswSQ8_correct_phi_128.c_index")
        dataset.save_faiss_index("embeddings", index_file_name + ".index.dpr")
        pickle.dump(dataset["id"], open(index_file_name + ".index_meta.dpr", "wb"))

        passages_file_name = os.path.join(self.tmpdirname, "psgs_w100.tsv.pkl")
        passages = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
        pickle.dump(passages, open(passages_file_name, "wb"))

        config = RagConfig(
            retrieval_vector_size=self.retrieval_vector_size,
            question_encoder=DPRConfig().to_dict(),
            generator=BartConfig().to_dict(),
            index_name="legacy",
            index_path=self.tmpdirname,
            passages_path=self.tmpdirname,
        )
        retriever = RagRetriever(
            config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer()
        )
        return retriever

    def test_hf_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_hf_index_retriever()
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
        self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
        self.assertEqual(doc_dicts[0]["id"][0], "1")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["id"][0], "0")  # max inner product is reached with first doc
169
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
Ola Piktus's avatar
Ola Piktus committed
170

171
172
173
174
175
    def test_save_and_from_pretrained(self):
        retriever = self.get_dummy_hf_index_retriever()
        with tempfile.TemporaryDirectory() as tmp_dirname:
            retriever.save_pretrained(tmp_dirname)

Ola Piktus's avatar
Ola Piktus committed
176
177
178
179
180
181
182
183
184
185
186
187
188
    def test_legacy_index_retriever_retrieve(self):
        n_docs = 1
        retriever = self.get_dummy_legacy_index_retriever()
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertEqual(len(doc_dicts), 2)
        self.assertEqual(sorted(doc_dicts[0]), ["text", "title"])
        self.assertEqual(len(doc_dicts[0]["text"]), n_docs)
        self.assertEqual(doc_dicts[0]["text"][0], "bar")  # max inner product is reached with second doc
        self.assertEqual(doc_dicts[1]["text"][0], "foo")  # max inner product is reached with first doc
189
        self.assertListEqual(doc_ids.tolist(), [[1], [0]])
Ola Piktus's avatar
Ola Piktus committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    @require_torch
    def test_hf_index_retriever_call(self):
        import torch

        n_docs = 1
        retriever = self.get_dummy_hf_index_retriever()
        question_input_ids = [[5, 7], [10, 11]]
        hidden_states = np.array(
            [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
        )
        out = retriever(question_input_ids, hidden_states, prefix=retriever.config.generator.prefix, n_docs=n_docs)
        context_input_ids, context_attention_mask, retrieved_doc_embeds = (
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, list)
        self.assertIsInstance(context_attention_mask, list)
        self.assertIsInstance(retrieved_doc_embeds, np.ndarray)

        out = retriever(
            question_input_ids,
            hidden_states,
            prefix=retriever.config.generator.prefix,
            n_docs=n_docs,
            return_tensors="pt",
        )
        context_input_ids, context_attention_mask, retrieved_doc_embeds, doc_ids = (  # noqa: F841
            out["context_input_ids"],
            out["context_attention_mask"],
            out["retrieved_doc_embeds"],
            out["doc_ids"],
        )
        self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
        self.assertIsInstance(context_input_ids, torch.Tensor)
        self.assertIsInstance(context_attention_mask, torch.Tensor)
        self.assertIsInstance(retrieved_doc_embeds, torch.Tensor)