modeling_funnel.py 64.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Funnel Transformer model. """

import os
from dataclasses import dataclass
from typing import Optional, Tuple

import numpy as np
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn import functional as F

Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
from ...activations import ACT2FN
from ...file_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
31
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
32
    add_start_docstrings_to_model_forward,
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
    replace_return_docstrings,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from ...modeling_outputs import (
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
38
39
40
41
42
    BaseModelOutput,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_funnel import FunnelConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "FunnelConfig"
_TOKENIZER_FOR_DOC = "FunnelTokenizer"

FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "funnel-transformer/small",  # B4-4-4H768
    "funnel-transformer/small-base",  # B4-4-4H768, no decoder
    "funnel-transformer/medium",  # B6-3x2-3x2H768
    "funnel-transformer/medium-base",  # B6-3x2-3x2H768, no decoder
    "funnel-transformer/intermediate",  # B6-6-6H768
    "funnel-transformer/intermediate-base",  # B6-6-6H768, no decoder
    "funnel-transformer/large",  # B8-8-8H1024
    "funnel-transformer/large-base",  # B8-8-8H1024, no decoder
    "funnel-transformer/xlarge-base",  # B10-10-10H1024
    "funnel-transformer/xlarge",  # B10-10-10H1024, no decoder
]

INF = 1e6


def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re

        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    _layer_map = {
        "k": "k_head",
        "q": "q_head",
        "v": "v_head",
        "o": "post_proj",
        "layer_1": "linear_1",
        "layer_2": "linear_2",
        "rel_attn": "attention",
        "ff": "ffn",
        "kernel": "weight",
        "gamma": "weight",
        "beta": "bias",
        "lookup_table": "weight",
        "word_embedding": "word_embeddings",
        "input": "embeddings",
    }

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
            logger.info("Skipping {}".format("/".join(name)))
            continue
        if name[0] == "generator":
            continue
        pointer = model
        skipped = False
        for m_name in name[1:]:
            if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
Stas Bekman's avatar
Stas Bekman committed
127
                layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
                if layer_index < config.num_hidden_layers:
                    block_idx = 0
                    while layer_index >= config.block_sizes[block_idx]:
                        layer_index -= config.block_sizes[block_idx]
                        block_idx += 1
                    pointer = pointer.blocks[block_idx][layer_index]
                else:
                    layer_index -= config.num_hidden_layers
                    pointer = pointer.layers[layer_index]
            elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
                pointer = pointer.r_kernel
                break
            elif m_name in _layer_map:
                pointer = getattr(pointer, _layer_map[m_name])
            else:
                try:
                    pointer = getattr(pointer, m_name)
                except AttributeError:
                    print("Skipping {}".format("/".join(name)), array.shape)
                    skipped = True
                    break
        if not skipped:
            if len(pointer.shape) != len(array.shape):
                array = array.reshape(pointer.shape)
            if m_name == "kernel":
                array = np.transpose(array)
            pointer.data = torch.from_numpy(array)

    return model


class FunnelEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
163
        self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        self.dropout = nn.Dropout(config.hidden_dropout)

    def forward(self, input_ids=None, inputs_embeds=None):
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        embeddings = self.layer_norm(inputs_embeds)
        embeddings = self.dropout(embeddings)
        return embeddings


class FunnelAttentionStructure(nn.Module):
    """
    Contains helpers for `FunnelRelMultiheadAttention `.
    """

    cls_token_type_id: int = 2

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.sin_dropout = nn.Dropout(config.hidden_dropout)
        self.cos_dropout = nn.Dropout(config.hidden_dropout)
        # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
        # dividide.
        self.pooling_mult = None

190
    def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
191
        """ Returns the attention inputs associated to the inputs of the model. """
192
        # inputs_embeds has shape batch_size x seq_len x d_model
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        # attention_mask and token_type_ids have shape batch_size x seq_len
        self.pooling_mult = 1
195
196
        self.seq_len = seq_len = inputs_embeds.size(1)
        position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
        token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
        cls_mask = (
199
            F.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            if self.config.separate_cls
            else None
        )
        return (position_embeds, token_type_mat, attention_mask, cls_mask)

    def token_type_ids_to_mat(self, token_type_ids):
        """Convert `token_type_ids` to `token_type_mat`."""
        token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
        # Treat <cls> as in the same segment as both A & B
        cls_ids = token_type_ids == self.cls_token_type_id
        cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
        return cls_mat | token_type_mat

    def get_position_embeds(self, seq_len, dtype, device):
        """
        Create and cache inputs related to relative position encoding. Those are very different depending on whether we
        are using the factorized or the relative shift attention:

        For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
        final formula.

        For the relative shif attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
        formula.

        Paper link: https://arxiv.org/abs/2006.03236
        """
        d_model = self.config.d_model
        if self.config.attention_type == "factorized":
            # Notations from the paper, appending A.2.2, final formula.
229
            # We need to create and return the matrices phi, psi, pi and omega.
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            pos_seq = torch.arange(0, seq_len, 1.0, dtype=dtype, device=device)
            freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device)
            inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
            sinusoid = pos_seq[:, None] * inv_freq[None]
            sin_embed = torch.sin(sinusoid)
            sin_embed_d = self.sin_dropout(sin_embed)
            cos_embed = torch.cos(sinusoid)
            cos_embed_d = self.cos_dropout(cos_embed)
            # This is different from the formula on the paper...
            phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
            psi = torch.cat([cos_embed, sin_embed], dim=-1)
            pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
            omega = torch.cat([-sin_embed, cos_embed], dim=-1)
            return (phi, pi, psi, omega)
        else:
            # Notations from the paper, appending A.2.1, final formula.
            # We need to create and return all the possible vectors R for all blocks and shifts.
            freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device)
            inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
            # Maximum relative positions for the first input
            rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=dtype, device=device)
            zero_offset = seq_len * 2
            sinusoid = rel_pos_id[:, None] * inv_freq[None]
            sin_embed = self.sin_dropout(torch.sin(sinusoid))
            cos_embed = self.cos_dropout(torch.cos(sinusoid))
            pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)

            pos = torch.arange(0, seq_len, dtype=dtype, device=device)
            pooled_pos = pos
            position_embeds_list = []
            for block_index in range(0, self.config.num_blocks):
                # For each block with block_index > 0, we need two types position embeddings:
                #   - Attention(pooled-q, unpooled-kv)
                #   - Attention(pooled-q, pooled-kv)
                # For block_index = 0 we only need the second one and leave the first one as None.

                # First type
                if block_index == 0:
                    position_embeds_pooling = None
                else:
                    pooled_pos = self.stride_pool_pos(pos, block_index)

                    # construct rel_pos_id
                    stride = 2 ** (block_index - 1)
                    rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
                    rel_pos = rel_pos[:, None] + zero_offset
                    rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
                    position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)

                # Second type
                pos = pooled_pos
                stride = 2 ** block_index
                rel_pos = self.relative_pos(pos, stride)

                rel_pos = rel_pos[:, None] + zero_offset
                rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
                position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)

                position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
            return position_embeds_list

    def stride_pool_pos(self, pos_id, block_index):
        """
        Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
        """
        if self.config.separate_cls:
            # Under separate <cls>, we treat the <cls> as the first token in
            # the previous block of the 1st real block. Since the 1st real
            # block always has position 1, the position of the previous block
            # will be at `1 - 2 ** block_index`.
            cls_pos = pos_id.new_tensor([-(2 ** block_index) + 1])
            pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
            return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
        else:
            return pos_id[::2]

    def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
        """
        Build the relative positional vector between `pos` and `pooled_pos`.
        """
        if pooled_pos is None:
            pooled_pos = pos

        ref_point = pooled_pos[0] - pos[0]
        num_remove = shift * len(pooled_pos)
        max_dist = ref_point + num_remove * stride
        min_dist = pooled_pos[0] - pos[-1]

        return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)

    def stride_pool(self, tensor, axis):
        """
        Perform pooling by stride slicing the tensor along the given axis.
        """
        if tensor is None:
            return None

        # Do the stride pool recursively if axis is a list or a tuple of ints.
        if isinstance(axis, (list, tuple)):
            for ax in axis:
                tensor = self.stride_pool(tensor, ax)
            return tensor

        # Do the stride pool recursively if tensor is a list or tuple of tensors.
        if isinstance(tensor, (tuple, list)):
            return type(tensor)(self.stride_pool(x, axis) for x in tensor)

        # Deal with negative axis
        axis %= tensor.ndim

        axis_slice = (
            slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
        )
        enc_slice = [slice(None)] * axis + [axis_slice]
        if self.config.separate_cls:
            cls_slice = [slice(None)] * axis + [slice(None, 1)]
            tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
        return tensor[enc_slice]

    def pool_tensor(self, tensor, mode="mean", stride=2):
        """Apply 1D pooling to a tensor of size [B x T (x H)]."""
        if tensor is None:
            return None

        # Do the pool recursively if tensor is a list or tuple of tensors.
        if isinstance(tensor, (tuple, list)):
            return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)

        if self.config.separate_cls:
            suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
            tensor = torch.cat([tensor[:, :1], suffix], dim=1)

        ndim = tensor.ndim
        if ndim == 2:
            tensor = tensor[:, None, :, None]
        elif ndim == 3:
            tensor = tensor[:, None, :, :]
        # Stride is applied on the second-to-last dimension.
        stride = (stride, 1)

        if mode == "mean":
            tensor = F.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
        elif mode == "max":
            tensor = F.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
        elif mode == "min":
            tensor = -F.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
        else:
            raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")

        if ndim == 2:
            return tensor[:, 0, :, 0]
        elif ndim == 3:
            return tensor[:, 0]
        return tensor

    def pre_attention_pooling(self, output, attention_inputs):
        """ Pool `output` and the proper parts of `attention_inputs` before the attention layer. """
        position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
        if self.config.pool_q_only:
            if self.config.attention_type == "factorized":
                position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
            token_type_mat = self.stride_pool(token_type_mat, 1)
            cls_mask = self.stride_pool(cls_mask, 0)
            output = self.pool_tensor(output, mode=self.config.pooling_type)
        else:
            self.pooling_mult *= 2
            if self.config.attention_type == "factorized":
                position_embeds = self.stride_pool(position_embeds, 0)
            token_type_mat = self.stride_pool(token_type_mat, [1, 2])
            cls_mask = self.stride_pool(cls_mask, [1, 2])
            attention_mask = self.pool_tensor(attention_mask, mode="min")
            output = self.pool_tensor(output, mode=self.config.pooling_type)
        attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
        return output, attention_inputs

    def post_attention_pooling(self, attention_inputs):
        """ Pool the proper parts of `attention_inputs` after the attention layer. """
        position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
        if self.config.pool_q_only:
            self.pooling_mult *= 2
            if self.config.attention_type == "factorized":
                position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
            token_type_mat = self.stride_pool(token_type_mat, 2)
            cls_mask = self.stride_pool(cls_mask, 1)
            attention_mask = self.pool_tensor(attention_mask, mode="min")
        attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
        return attention_inputs


def _relative_shift_gather(positional_attn, context_len, shift):
    batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
    # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j

    # What's next is the same as doing the following gather, which might be clearer code but less efficient.
424
    # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
Sylvain Gugger's avatar
Sylvain Gugger committed
425
    # # matrix of context_len + i-j
426
    # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
Sylvain Gugger's avatar
Sylvain Gugger committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
    positional_attn = positional_attn[:, :, shift:, :]
    positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
    positional_attn = positional_attn[..., :context_len]
    return positional_attn


class FunnelRelMultiheadAttention(nn.Module):
    def __init__(self, config, block_index):
        super().__init__()
        self.config = config
        self.block_index = block_index
        d_model, n_head, d_head = config.d_model, config.n_head, config.d_head

        self.hidden_dropout = nn.Dropout(config.hidden_dropout)
        self.attention_dropout = nn.Dropout(config.attention_dropout)

        self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
        self.k_head = nn.Linear(d_model, n_head * d_head)
        self.v_head = nn.Linear(d_model, n_head * d_head)

        self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
        self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
        self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
        self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
        self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))

        self.post_proj = nn.Linear(n_head * d_head, d_model)
456
        self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        self.scale = 1.0 / (d_head ** 0.5)

    def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
        """ Relative attention score for the positional encodings """
        # q_head has shape batch_size x sea_len x n_head x d_head
        if self.config.attention_type == "factorized":
            # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
            # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
            phi, pi, psi, omega = position_embeds
            # Shape n_head x d_head
            u = self.r_r_bias * self.scale
            # Shape d_model x n_head x d_head
            w_r = self.r_kernel

            # Shape batch_size x sea_len x n_head x d_model
            q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
            q_r_attention_1 = q_r_attention * phi[:, None]
            q_r_attention_2 = q_r_attention * pi[:, None]

            # Shape batch_size x n_head x seq_len x context_len
            positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
                "bind,jd->bnij", q_r_attention_2, omega
            )
        else:
            shift = 2 if q_head.shape[1] != context_len else 1
            # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
            # Grab the proper positional encoding, shape max_rel_len x d_model
            r = position_embeds[self.block_index][shift - 1]
            # Shape n_head x d_head
            v = self.r_r_bias * self.scale
            # Shape d_model x n_head x d_head
            w_r = self.r_kernel

            # Shape max_rel_len x n_head x d_model
            r_head = torch.einsum("td,dnh->tnh", r, w_r)
            # Shape batch_size x n_head x seq_len x max_rel_len
            positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
            # Shape batch_size x n_head x seq_len x context_len
            positional_attn = _relative_shift_gather(positional_attn, context_len, shift)

        if cls_mask is not None:
            positional_attn *= cls_mask
        return positional_attn

    def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
        """ Relative attention score for the token_type_ids """
        if token_type_mat is None:
            return 0
        batch_size, seq_len, context_len = token_type_mat.shape
        # q_head has shape batch_size x seq_len x n_head x d_head
        # Shape n_head x d_head
        r_s_bias = self.r_s_bias * self.scale

        # Shape batch_size x n_head x seq_len x 2
        token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
        # Shape batch_size x n_head x seq_len x context_len
        token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
        # Shapes batch_size x n_head x seq_len
        diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
        # Shape batch_size x n_head x seq_len x context_len
        token_type_attn = torch.where(
            token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
        )

        if cls_mask is not None:
            token_type_attn *= cls_mask
        return token_type_attn

525
526
527
    def forward(self, query, key, value, attention_inputs, output_attentions=False):
        # query has shape batch_size x seq_len x d_model
        # key and value have shapes batch_size x context_len x d_model
Sylvain Gugger's avatar
Sylvain Gugger committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs

        batch_size, seq_len, _ = query.shape
        context_len = key.shape[1]
        n_head, d_head = self.config.n_head, self.config.d_head

        # Shape batch_size x seq_len x n_head x d_head
        q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
        # Shapes batch_size x context_len x n_head x d_head
        k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
        v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)

        q_head = q_head * self.scale
        # Shape n_head x d_head
        r_w_bias = self.r_w_bias * self.scale
        # Shapes batch_size x n_head x seq_len x context_len
        content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
        positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
        token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)

        # merge attention scores
        attn_score = content_score + positional_attn + token_type_attn

        # precision safe in case of mixed precision training
        dtype = attn_score.dtype
        attn_score = attn_score.float()
        # perform masking
        if attention_mask is not None:
556
            attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
Sylvain Gugger's avatar
Sylvain Gugger committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        # attention probability
        attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
        attn_prob = self.attention_dropout(attn_prob)

        # attention output, shape batch_size x seq_len x n_head x d_head
        attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)

        # Shape shape batch_size x seq_len x d_model
        attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
        attn_out = self.hidden_dropout(attn_out)

        output = self.layer_norm(query + attn_out)
        return (output, attn_prob) if output_attentions else (output,)


class FunnelPositionwiseFFN(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.linear_1 = nn.Linear(config.d_model, config.d_inner)
        self.activation_function = ACT2FN[config.hidden_act]
        self.activation_dropout = nn.Dropout(config.activation_dropout)
        self.linear_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.hidden_dropout)
580
        self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
Sylvain Gugger's avatar
Sylvain Gugger committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

    def forward(self, hidden):
        h = self.linear_1(hidden)
        h = self.activation_function(h)
        h = self.activation_dropout(h)
        h = self.linear_2(h)
        h = self.dropout(h)
        return self.layer_norm(hidden + h)


class FunnelLayer(nn.Module):
    def __init__(self, config, block_index):
        super().__init__()
        self.attention = FunnelRelMultiheadAttention(config, block_index)
        self.ffn = FunnelPositionwiseFFN(config)

597
598
    def forward(self, query, key, value, attention_inputs, output_attentions=False):
        attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
Sylvain Gugger's avatar
Sylvain Gugger committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        output = self.ffn(attn[0])
        return (output, attn[1]) if output_attentions else (output,)


class FunnelEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.attention_structure = FunnelAttentionStructure(config)
        self.blocks = nn.ModuleList(
            [
                nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
                for block_index, block_size in enumerate(config.block_sizes)
            ]
        )

    def forward(
        self,
        inputs_embeds,
        attention_mask=None,
        token_type_ids=None,
        output_attentions=False,
        output_hidden_states=False,
622
        return_dict=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    ):
        # The pooling is not implemented on long tensors, so we convert this mask.
        attention_mask = attention_mask.type_as(inputs_embeds)
        attention_inputs = self.attention_structure.init_attention_inputs(
            inputs_embeds,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
        )
        hidden = inputs_embeds

        all_hidden_states = (inputs_embeds,) if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for block_index, block in enumerate(self.blocks):
            pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
            pooling_flag = pooling_flag and block_index > 0
            if pooling_flag:
                pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
                    hidden, attention_inputs
                )
            for (layer_index, layer) in enumerate(block):
                for repeat_index in range(self.config.block_repeats[block_index]):
                    do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
                    if do_pooling:
                        query = pooled_hidden
                        key = value = hidden if self.config.pool_q_only else pooled_hidden
                    else:
                        query = key = value = hidden
                    layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
                    hidden = layer_output[0]
                    if do_pooling:
                        attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)

                    if output_attentions:
                        all_attentions = all_attentions + layer_output[1:]
                    if output_hidden_states:
                        all_hidden_states = all_hidden_states + (hidden,)

        if not return_dict:
            return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)


def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
667
668
669
    """
    Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
    if stride == 1:
        return x
    if separate_cls:
        cls = x[:, :1]
        x = x[:, 1:]
    output = torch.repeat_interleave(x, repeats=stride, dim=1)
    if separate_cls:
        if truncate_seq:
            output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
        output = output[:, : target_len - 1]
        output = torch.cat([cls, output], dim=1)
    else:
        output = output[:, :target_len]
    return output


class FunnelDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.attention_structure = FunnelAttentionStructure(config)
        self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])

    def forward(
        self,
        final_hidden,
        first_block_hidden,
        attention_mask=None,
        token_type_ids=None,
        output_attentions=False,
        output_hidden_states=False,
701
        return_dict=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    ):
        upsampled_hidden = upsample(
            final_hidden,
            stride=2 ** (len(self.config.block_sizes) - 1),
            target_len=first_block_hidden.shape[1],
            separate_cls=self.config.separate_cls,
            truncate_seq=self.config.truncate_seq,
        )

        hidden = upsampled_hidden + first_block_hidden
        all_hidden_states = (hidden,) if output_hidden_states else None
        all_attentions = () if output_attentions else None

        attention_inputs = self.attention_structure.init_attention_inputs(
            hidden,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
        )

        for layer in self.layers:
            layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
            hidden = layer_output[0]

            if output_attentions:
                all_attentions = all_attentions + layer_output[1:]
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden,)

        if not return_dict:
            return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)


class FunnelDiscriminatorPredictions(nn.Module):
    """Prediction module for the discriminator, made up of two dense layers."""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.d_model, config.d_model)
        self.dense_prediction = nn.Linear(config.d_model, 1)

    def forward(self, discriminator_hidden_states):
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
        logits = self.dense_prediction(hidden_states).squeeze()
        return logits


class FunnelPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
752
753
754
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
Sylvain Gugger's avatar
Sylvain Gugger committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    """

    config_class = FunnelConfig
    load_tf_weights = load_tf_weights_in_funnel
    base_model_prefix = "funnel"

    def _init_weights(self, module):
        classname = module.__class__.__name__
        if classname.find("Linear") != -1:
            if getattr(module, "weight", None) is not None:
                if self.config.initializer_std is None:
                    fan_out, fan_in = module.weight.shape
                    std = np.sqrt(1.0 / float(fan_in + fan_out))
                else:
                    std = self.config.initializer_std
                nn.init.normal_(module.weight, std=std)
            if getattr(module, "bias", None) is not None:
                nn.init.constant_(module.bias, 0.0)
        elif classname == "FunnelRelMultiheadAttention":
            nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
            nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
            nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
            nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
            nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
        elif classname == "FunnelEmbeddings":
            std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
            nn.init.normal_(module.word_embeddings.weight, std=std)


class FunnelClassificationHead(nn.Module):
    def __init__(self, config, n_labels):
        super().__init__()
        self.linear_hidden = nn.Linear(config.d_model, config.d_model)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.linear_out = nn.Linear(config.d_model, n_labels)

    def forward(self, hidden):
        hidden = self.linear_hidden(hidden)
793
        hidden = torch.tanh(hidden)
Sylvain Gugger's avatar
Sylvain Gugger committed
794
795
796
797
798
799
800
        hidden = self.dropout(hidden)
        return self.linear_out(hidden)


@dataclass
class FunnelForPreTrainingOutput(ModelOutput):
    """
801
    Output type of :class:`~transformers.FunnelForPreTraining`.
Sylvain Gugger's avatar
Sylvain Gugger committed
802
803
804
805
806
807
808
809
810
811
812
813

    Args:
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
            Total loss of the ELECTRA-style objective.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`):
            Prediction scores of the head (scores for each token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Sylvain Gugger's avatar
Sylvain Gugger committed
814
815
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
Sylvain Gugger's avatar
Sylvain Gugger committed
816
817
818
819
820
821
822
823
824
825
826

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Sylvain Gugger's avatar
Sylvain Gugger committed
827
828
FUNNEL_START_DOCSTRING = r"""

Sylvain Gugger's avatar
Sylvain Gugger committed
829
830
    The Funnel Transformer model was proposed in `Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
    Language Processing <https://arxiv.org/abs/2006.03236>`__ by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
Sylvain Gugger's avatar
Sylvain Gugger committed
831

Sylvain Gugger's avatar
Sylvain Gugger committed
832
833
834
835
    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

Sylvain Gugger's avatar
Sylvain Gugger committed
836
837
838
    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
Sylvain Gugger's avatar
Sylvain Gugger committed
839
840
841

    Parameters:
        config (:class:`~transformers.FunnelConfig`): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
842
843
844
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
Sylvain Gugger's avatar
Sylvain Gugger committed
845
846
847
"""

FUNNEL_INPUTS_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
848
849
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Sylvain Gugger's avatar
Sylvain Gugger committed
850
851
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
852
853
854
            Indices can be obtained using :class:`~transformers.BertTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.
Sylvain Gugger's avatar
Sylvain Gugger committed
855
856

            `What are input IDs? <../glossary.html#input-ids>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
857
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
858
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
859
860

            - 1 for tokens that are **not masked**,
861
            - 0 for tokens that are **masked**.
Sylvain Gugger's avatar
Sylvain Gugger committed
862
863

            `What are attention masks? <../glossary.html#attention-mask>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
864
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
865
866
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
867
868
869

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.
Sylvain Gugger's avatar
Sylvain Gugger committed
870
871

            `What are token type IDs? <../glossary.html#token-type-ids>`_
Sylvain Gugger's avatar
Sylvain Gugger committed
872
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
873
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
Sylvain Gugger's avatar
Sylvain Gugger committed
874
875
876
877
878
879
880
881
882
883
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
884
885
886
887
"""


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
888
889
890
891
    """
    The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
    decoder) or any task-specific head on top.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    FUNNEL_START_DOCSTRING,
)
class FunnelBaseModel(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = FunnelEmbeddings(config)
        self.encoder = FunnelEncoder(config)

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings.word_embeddings = new_embeddings

909
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small-base",
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # TODO: deal with head_mask
        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)

        encoder_outputs = self.encoder(
            inputs_embeds,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs


@add_start_docstrings(
967
    "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
Sylvain Gugger's avatar
Sylvain Gugger committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
    FUNNEL_START_DOCSTRING,
)
class FunnelModel(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.embeddings = FunnelEmbeddings(config)
        self.encoder = FunnelEncoder(config)
        self.decoder = FunnelDecoder(config)

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings.word_embeddings = new_embeddings

986
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small",
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # TODO: deal with head_mask
        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)

        encoder_outputs = self.encoder(
            inputs_embeds,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=return_dict,
        )

        decoder_outputs = self.decoder(
            final_hidden=encoder_outputs[0],
            first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            idx = 0
            outputs = (decoder_outputs[0],)
            if output_hidden_states:
                idx += 1
                outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
            if output_attentions:
                idx += 1
                outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
            return outputs

        return BaseModelOutput(
            last_hidden_state=decoder_outputs[0],
            hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
            if output_hidden_states
            else None,
            attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
        )


add_start_docstrings(
    """
    Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
Sylvain Gugger's avatar
Sylvain Gugger committed
1071
1072
    generated tokens.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    FUNNEL_START_DOCSTRING,
)


class FunnelForPreTraining(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.funnel = FunnelModel(config)
        self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
        self.init_weights()

1085
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    @replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1099
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1100
1101
            Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see :obj:`input_ids`
            docstring) Indices should be in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
1102
1103
1104

            - 0 indicates the token is an original token,
            - 1 indicates the token was replaced.
Sylvain Gugger's avatar
Sylvain Gugger committed
1105
1106
1107
1108
1109
1110
1111
1112
1113

        Returns:

        Examples::

            >>> from transformers import FunnelTokenizer, FunnelForPreTraining
            >>> import torch

            >>> tokenizer = FunnelTokenizer.from_pretrained('funnel-transformer/small')
1114
            >>> model = FunnelForPreTraining.from_pretrained('funnel-transformer/small')
Sylvain Gugger's avatar
Sylvain Gugger committed
1115

1116
1117
            >>> inputs = tokenizer("Hello, my dog is cute", return_tensors= "pt")
            >>> logits = model(**inputs).logits
Sylvain Gugger's avatar
Sylvain Gugger committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        discriminator_hidden_states = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        discriminator_sequence_output = discriminator_hidden_states[0]

        logits = self.discriminator_predictions(discriminator_sequence_output)

        loss = None
        if labels is not None:
            loss_fct = nn.BCEWithLogitsLoss()
            if attention_mask is not None:
                active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
                active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
                active_labels = labels[active_loss]
                loss = loss_fct(active_logits, active_labels.float())
            else:
                loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())

        if not return_dict:
            output = (logits,) + discriminator_hidden_states[1:]
            return ((loss,) + output) if loss is not None else output

        return FunnelForPreTrainingOutput(
            loss=loss,
            logits=logits,
            hidden_states=discriminator_hidden_states.hidden_states,
            attentions=discriminator_hidden_states.attentions,
        )


@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top. """, FUNNEL_START_DOCSTRING)
class FunnelForMaskedLM(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.funnel = FunnelModel(config)
        self.lm_head = nn.Linear(config.d_model, config.vocab_size)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head

1170
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1171
1172
1173
1174
1175
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
Sylvain Gugger's avatar
Sylvain Gugger committed
1176
        mask="<mask>",
Sylvain Gugger's avatar
Sylvain Gugger committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1190
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1191
1192
1193
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
Sylvain Gugger's avatar
Sylvain Gugger committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]
        prediction_logits = self.lm_head(last_hidden_state)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1228
    """
1229
    Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
Sylvain Gugger's avatar
Sylvain Gugger committed
1230
1231
    first timestep of the last hidden state) e.g. for GLUE tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    FUNNEL_START_DOCSTRING,
)
class FunnelForSequenceClassification(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.funnel = FunnelBaseModel(config)
        self.classifier = FunnelClassificationHead(config, config.num_labels)
        self.init_weights()

1243
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small-base",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1262
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1263
1264
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
Sylvain Gugger's avatar
Sylvain Gugger committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]
        pooled_output = last_hidden_state[:, 0]
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1306
1307
1308
1309
    """
    Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
    timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    FUNNEL_START_DOCSTRING,
)
class FunnelForMultipleChoice(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.funnel = FunnelBaseModel(config)
        self.classifier = FunnelClassificationHead(config, 1)
        self.init_weights()

1320
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small-base",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1339
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1340
1341
1342
            Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
            num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
            :obj:`input_ids` above)
Sylvain Gugger's avatar
Sylvain Gugger committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]
        pooled_output = last_hidden_state[:, 0]
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1389
1390
1391
1392
    """
    Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
    output) e.g. for Named-Entity-Recognition (NER) tasks.
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
    FUNNEL_START_DOCSTRING,
)
class FunnelForTokenClassification(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.funnel = FunnelModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1406
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1425
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1426
1427
            Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
            1]``.
Sylvain Gugger's avatar
Sylvain Gugger committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]
        last_hidden_state = self.dropout(last_hidden_state)
        logits = self.classifier(last_hidden_state)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
Sylvain Gugger's avatar
Sylvain Gugger committed
1472
1473
1474
1475
    """
    Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
    (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
Sylvain Gugger's avatar
Sylvain Gugger committed
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
    FUNNEL_START_DOCSTRING,
)
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.funnel = FunnelModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1488
    @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="funnel-transformer/small",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
1508
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1509
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1510
1511
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1512
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1513
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1514
1515
            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
            sequence are not taken into account for computing the loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.funnel(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = outputs[0]

        logits = self.qa_outputs(last_hidden_state)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )