run_swag.py 29.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""BERT finetuning runner.
   Finetuning the library models for multiple choice on SWAG (Bert).
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
19

20
21

import argparse
22
import csv
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
import glob
import logging
25
26
27
28
29
import os
import random

import numpy as np
import torch
30
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
31
from torch.utils.data.distributed import DistributedSampler
Aymeric Augustin's avatar
Aymeric Augustin committed
32
33
from tqdm import tqdm, trange

34
import transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
35
36
37
38
39
40
41
42
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AutoConfig,
    AutoModelForMultipleChoice,
    AutoTokenizer,
    get_linear_schedule_with_warmup,
)
43
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
44

45

46
47
try:
    from torch.utils.tensorboard import SummaryWriter
48
except ImportError:
49
50
    from tensorboardX import SummaryWriter

51
52
53

logger = logging.getLogger(__name__)

54

55
56
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
57
58

    def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
74
        attributes = [
75
76
77
78
79
80
81
82
83
84
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
        ]

        if self.label is not None:
85
            attributes.append("label: {}".format(self.label))
86

87
        return ", ".join(attributes)
88
89


90
91
class InputFeatures(object):
    def __init__(self, example_id, choices_features, label):
92
93
        self.example_id = example_id
        self.choices_features = [
94
            {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
95
96
97
98
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label

99

100
def read_swag_examples(input_file, is_training=True):
101
    with open(input_file, "r", encoding="utf-8") as f:
102
        lines = list(csv.reader(f))
103

104
105
    if is_training and lines[0][-1] != "label":
        raise ValueError("For training, the input file must contain a label column.")
106
107
108

    examples = [
        SwagExample(
109
110
111
112
113
114
115
116
117
118
119
120
            swag_id=line[2],
            context_sentence=line[4],
            start_ending=line[5],  # in the swag dataset, the
            # common beginning of each
            # choice is stored in "sent2".
            ending_0=line[7],
            ending_1=line[8],
            ending_2=line[9],
            ending_3=line[10],
            label=int(line[11]) if is_training else None,
        )
        for line in lines[1:]  # we skip the line with the column names
121
122
123
124
    ]

    return examples

125
126

def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
146
    for example_index, example in tqdm(enumerate(examples)):
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
            logger.info("swag_id: {}".format(example.swag_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
186
187
188
189
                logger.info("tokens: {}".format(" ".join(tokens)))
                logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
                logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
190
191
192
            if is_training:
                logger.info("label: {}".format(label))

193
        features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
194
195
196

    return features

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

214

215
216
217
218
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

219

220
def select_field(features, field):
221
    return [[choice[field] for choice in feature.choices_features] for feature in features]
222

223
224
225
226
227
228
229
230

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

231

232
233
234
235
236
237
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
238
239
240
241
242
243
244
245
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
246
247
248
249
250
251
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_swag_examples(input_file)
252
        features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
253
254
255
256
257
258
259
260
261

        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
262
263
264
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
265
266
267
    all_label = torch.tensor([f.label for f in features], dtype=torch.long)

    if evaluate:
268
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
269
    else:
270
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
271
272
273
274

    if output_examples:
        return dataset, examples, features
    return dataset
275
276


277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
293
    no_decay = ["bias", "LayerNorm.weight"]
294
    optimizer_grouped_parameters = [
295
296
297
298
299
300
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
301
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
302
303
304
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
305
306
307
308
309
310
311
312
313
314
315
316
317
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
318
319
320
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
321
322
323
324
325
326

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
327
328
329
330
331
332
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
333
334
335
336
337
338
339
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
340
    set_seed(args)  # Added here for reproductibility
341
342
343
344
345
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
346
347
348
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
349
                # 'token_type_ids':  None if args.model_type == 'xlm' else batch[2],
350
351
352
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
353
354
355
356
            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[5],
            #                    'p_mask':       batch[6]})
            outputs = model(**inputs)
357
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
358
359

            if args.n_gpu > 1:
360
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
381
382
383
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
384
385
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
386
387
388
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
389
390
391
392
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
393
394
395
396
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
397
398
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
399
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
400
401
402
403
404
405
406
407
408
409
410
411
412
413
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step

414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
438
439
440
441
442
443
444
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                # 'token_type_ids': None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
445
446
447
448
449
450
451
452
453

            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[4],
            #                    'p_mask':    batch[5]})
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            eval_loss += tmp_eval_loss.mean().item()

        logits = logits.detach().cpu().numpy()
454
        label_ids = inputs["labels"].to("cpu").numpy()
455
456
457
458
        tmp_eval_accuracy = accuracy(logits, label_ids)
        eval_accuracy += tmp_eval_accuracy

        nb_eval_steps += 1
459
        nb_eval_examples += inputs["input_ids"].size(0)
460
461
462

    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_examples
463
    result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
464
465
466
467
468
469
470
471
472
473

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("%s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result

474

475
476
477
def main():
    parser = argparse.ArgumentParser()

478
    # Required parameters
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SWAG csv for predictions. E.g., val.csv or test.csv",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
494
        help="Path to pretrained model or model identifier from huggingface.co/models",
495
496
497
498
499
500
501
502
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
503

504
    # Other parameters
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
583
584
    args = parser.parse_args()

585
586
587
588
589
590
591
592
593
594
595
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
596
597
598
599
600

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
601

602
603
604
605
606
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
607
608
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
609
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
610
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
611
612
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
613
        torch.distributed.init_process_group(backend="nccl")
614
615
        args.n_gpu = 1
    args.device = device
616

617
    # Setup logging
618
619
620
621
622
623
624
625
626
627
628
629
630
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
631
632
633
634
635
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
636

637
638
    # Set seed
    set_seed(args)
639

640
641
642
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
643

644
    config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
Lysandre's avatar
Lysandre committed
645
646
647
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
    )
648
    model = AutoModelForMultipleChoice.from_pretrained(
649
650
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )
651

652
653
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
654

655
    model.to(args.device)
656

657
    logger.info("Training/evaluation parameters %s", args)
658

659
    # Training
660
    if args.do_train:
661
662
663
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
664

665
666
667
668
669
    # Save the trained model and the tokenizer
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
670
671
672
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
673
674
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
675

676
        # Good practice: save your training arguments together with the trained model
677
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
678
679

        # Load a trained model and vocabulary that you have fine-tuned
680
681
        model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
682
        model.to(args.device)
683

684
685
686
687
688
689
690
691
692
693
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            checkpoints = [args.output_dir]
        else:
            # if do_train is False and do_eval is true, load model directly from pretrained.
            checkpoints = [args.model_name_or_path]

        if args.eval_all_checkpoints:
694
695
696
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
697
698
699
700
701

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
702
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
703
704
            model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
705
            model.to(args.device)
706

707
708
            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)
709

710
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
711
            results.update(result)
712

713
    logger.info("Results: {}".format(results))
714

715
    return results
716
717
718
719


if __name__ == "__main__":
    main()