test_hans.py 23.5 KB
Newer Older
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from tqdm import tqdm, trange

from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
53
    default_data_collator,
thomwolf's avatar
thomwolf committed
54
55
    get_linear_schedule_with_warmup,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
56
from utils_hans import HansDataset, hans_output_modes, hans_processors
thomwolf's avatar
thomwolf committed
57

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
58
59
60

try:
    from torch.utils.tensorboard import SummaryWriter
61
except ImportError:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
62
63
64
65
66
67
68
    from tensorboardX import SummaryWriter


logger = logging.getLogger(__name__)


MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
69
70
71
72
73
74
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
93
    train_dataloader = DataLoader(
94
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=default_data_collator,
Sylvain Gugger's avatar
Sylvain Gugger committed
95
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
96
97
98
99
100
101
102
103

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
104
    no_decay = ["bias", "LayerNorm.weight"]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
105
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
106
107
108
109
110
111
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
112
113

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
thomwolf's avatar
thomwolf committed
114
115
116
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
117
118
119
120
121
122
123
124
125
126
127
128
129
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
130
131
132
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
133
134
135
136
137
138

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
145
146
147
148
149
150
151
152
153
154
155
156
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
157
            inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
158
159
160
161
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
162
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
thomwolf's avatar
thomwolf committed
186
187
188
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
189
190
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
thomwolf's avatar
thomwolf committed
191
                            eval_key = "eval_{}".format(key)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
192
193
194
195
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
thomwolf's avatar
thomwolf committed
196
197
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
198
199
200
201
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
thomwolf's avatar
thomwolf committed
202
                    # print(json.dumps({**logs, **{'step': global_step}}))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
203
204
205

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
thomwolf's avatar
thomwolf committed
206
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
207
208
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
thomwolf's avatar
thomwolf committed
209
210
211
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
212
                    model_to_save.save_pretrained(output_dir)
thomwolf's avatar
thomwolf committed
213
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


Sylvain Gugger's avatar
Sylvain Gugger committed
229
def evaluate(args, model, tokenizer, label_list, prefix=""):
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
230
231
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
thomwolf's avatar
thomwolf committed
232
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
233
234
235

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
240
241
242
243
        eval_dataset = HansDataset(
            args.data_dir,
            tokenizer,
            args.task_name,
            args.max_seq_length,
            overwrite_cache=args.overwrite_cache,
            evaluate=True,
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
244
245
246
247
248
249
250

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
251
        eval_dataloader = DataLoader(
252
            eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=default_data_collator,
Sylvain Gugger's avatar
Sylvain Gugger committed
253
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
254
255

        # multi-gpu eval
256
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
257
258
259
260
261
262
263
264
265
266
267
268
            model = torch.nn.DataParallel(model)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
            inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
            pair_ids = batch.pop("pairID", None)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
271
272
273
274
275
276
277
278
            with torch.no_grad():
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
279
                out_label_ids = inputs["labels"].detach().cpu().numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
280
                pair_ids = pair_ids.detach().cpu().numpy()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
281
282
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
283
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
Sylvain Gugger's avatar
Sylvain Gugger committed
284
                pair_ids = np.append(pair_ids, pair_ids.detach().cpu().numpy(), axis=0)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
285
286
287
288
289
290
291
292
293
294
295

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)

        output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
        with open(output_eval_file, "w") as writer:
            writer.write("pairID,gld_label\n")
            for pid, pred in zip(pair_ids, preds):
thomwolf's avatar
thomwolf committed
296
                writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
297
298
299
300
301
302
303

    return results


def main():
    parser = argparse.ArgumentParser()

304
    # Required parameters
thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
324
        help="Path to pretrained model or model identifier from huggingface.co/models",
thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
331
        help="The name of the task to train selected in the list: " + ", ".join(hans_processors.keys()),
thomwolf's avatar
thomwolf committed
332
333
334
335
336
337
338
339
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
340

341
    # Other parameters
thomwolf's avatar
thomwolf committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
429
430
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
431
432
433
434
435
436
437
438
439
440
441
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
442
443
444
445
446

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
thomwolf's avatar
thomwolf committed
447

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
448
449
450
451
452
453
454
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
455
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
456
457
458
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
459
        torch.distributed.init_process_group(backend="nccl")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
460
461
462
463
        args.n_gpu = 1
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
464
465
466
467
468
469
470
471
472
473
474
475
476
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
477
478
479
480
481
482

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
Sylvain Gugger's avatar
Sylvain Gugger committed
483
    if args.task_name not in hans_processors:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
484
        raise ValueError("Task not found: %s" % (args.task_name))
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
    processor = hans_processors[args.task_name]()
    args.output_mode = hans_output_modes[args.task_name]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
487
488
489
490
491
492
493
494
495
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
513
514
515
516
517
518
519
520
521
522

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
Sylvain Gugger's avatar
Sylvain Gugger committed
523
524
525
        train_dataset = HansDataset(
            args.data_dir, tokenizer, args.task_name, args.max_seq_length, overwrite_cache=args.overwrite_cache
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
526
527
528
529
530
531
532
533
534
535
536
537
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
538
539
540
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
541
542
543
544
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
thomwolf's avatar
thomwolf committed
545
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
546
547
548
549
550
551
552
553
554
555
556
557

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
558
559
560
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
561
562
563
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
564
565
566
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
567
568
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
Sylvain Gugger's avatar
Sylvain Gugger committed
569
            result = evaluate(args, model, tokenizer, label_list, prefix=prefix)
thomwolf's avatar
thomwolf committed
570
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
571
572
573
574
575
576
577
            results.update(result)

    return results


if __name__ == "__main__":
    main()