"tools/nni_annotation/vscode:/vscode.git/clone" did not exist on "fe338861f8e96e537d8503f4c58e59e7c068703b"
test_hans.py 23.6 KB
Newer Older
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
Sylvain Gugger's avatar
Sylvain Gugger committed
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
31
32
33
34
35
36
37
38
39
40
from tqdm import tqdm, trange

from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    DefaultDataCollator,
thomwolf's avatar
thomwolf committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
    get_linear_schedule_with_warmup,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
56
from utils_hans import HansDataset, hans_output_modes, hans_processors
thomwolf's avatar
thomwolf committed
57

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
58
59
60

try:
    from torch.utils.tensorboard import SummaryWriter
61
except ImportError:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
62
63
64
65
66
67
68
    from tensorboardX import SummaryWriter


logger = logging.getLogger(__name__)


MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
69
70
71
72
73
74
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95
96
97
98
    train_dataloader = DataLoader(
        train_dataset,
        sampler=train_sampler,
        batch_size=args.train_batch_size,
        collate_fn=DefaultDataCollator().collate_batch,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
99
100
101
102
103
104
105
106

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
107
    no_decay = ["bias", "LayerNorm.weight"]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
108
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
115
116

    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
thomwolf's avatar
thomwolf committed
117
118
119
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
120
121
122
123
124
125
126
127
128
129
130
131
132
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
133
134
135
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
136
137
138
139
140
141

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
thomwolf's avatar
thomwolf committed
142
143
144
145
146
147
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
148
149
150
151
152
153
154
155
156
157
158
159
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
160
            inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
161
162
163
164
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
165
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logs = {}
thomwolf's avatar
thomwolf committed
189
190
191
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
192
193
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
thomwolf's avatar
thomwolf committed
194
                            eval_key = "eval_{}".format(key)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
195
196
197
198
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
thomwolf's avatar
thomwolf committed
199
200
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
201
202
203
204
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
thomwolf's avatar
thomwolf committed
205
                    # print(json.dumps({**logs, **{'step': global_step}}))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
206
207
208

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
thomwolf's avatar
thomwolf committed
209
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
210
211
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
thomwolf's avatar
thomwolf committed
212
213
214
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
215
                    model_to_save.save_pretrained(output_dir)
thomwolf's avatar
thomwolf committed
216
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


Sylvain Gugger's avatar
Sylvain Gugger committed
232
def evaluate(args, model, tokenizer, label_list, prefix=""):
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
233
234
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
thomwolf's avatar
thomwolf committed
235
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
236
237
238

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
Sylvain Gugger's avatar
Sylvain Gugger committed
239
240
241
242
243
244
245
246
        eval_dataset = HansDataset(
            args.data_dir,
            tokenizer,
            args.task_name,
            args.max_seq_length,
            overwrite_cache=args.overwrite_cache,
            evaluate=True,
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
247
248
249
250
251
252
253

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset)
Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
258
259
        eval_dataloader = DataLoader(
            eval_dataset,
            sampler=eval_sampler,
            batch_size=args.eval_batch_size,
            collate_fn=DefaultDataCollator().collate_batch,
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
260
261

        # multi-gpu eval
262
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
263
264
265
266
267
268
269
270
271
272
273
274
            model = torch.nn.DataParallel(model)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
            inputs = {k: t.to(args.device) for k, t in batch.items() if k != "pairID"}
            pair_ids = batch.pop("pairID", None)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
277
278
279
280
281
282
283
284
            with torch.no_grad():
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
285
                out_label_ids = inputs["labels"].detach().cpu().numpy()
Sylvain Gugger's avatar
Sylvain Gugger committed
286
                pair_ids = pair_ids.detach().cpu().numpy()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
287
288
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
289
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
Sylvain Gugger's avatar
Sylvain Gugger committed
290
                pair_ids = np.append(pair_ids, pair_ids.detach().cpu().numpy(), axis=0)
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
291
292
293
294
295
296
297
298
299
300
301

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)

        output_eval_file = os.path.join(eval_output_dir, "hans_predictions.txt")
        with open(output_eval_file, "w") as writer:
            writer.write("pairID,gld_label\n")
            for pid, pred in zip(pair_ids, preds):
thomwolf's avatar
thomwolf committed
302
                writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
303
304
305
306
307
308
309

    return results


def main():
    parser = argparse.ArgumentParser()

310
    # Required parameters
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
330
        help="Path to pretrained model or model identifier from huggingface.co/models",
thomwolf's avatar
thomwolf committed
331
332
333
334
335
336
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
337
        help="The name of the task to train selected in the list: " + ", ".join(hans_processors.keys()),
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
346

347
    # Other parameters
thomwolf's avatar
thomwolf committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
435
436
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
445
446
447
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
448
449
450
451
452

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
thomwolf's avatar
thomwolf committed
453

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
454
455
456
457
458
459
460
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
461
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
462
463
464
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
thomwolf's avatar
thomwolf committed
465
        torch.distributed.init_process_group(backend="nccl")
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
466
467
468
469
        args.n_gpu = 1
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
470
471
472
473
474
475
476
477
478
479
480
481
482
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
483
484
485
486
487
488

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
Sylvain Gugger's avatar
Sylvain Gugger committed
489
    if args.task_name not in hans_processors:
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
490
        raise ValueError("Task not found: %s" % (args.task_name))
Sylvain Gugger's avatar
Sylvain Gugger committed
491
492
    processor = hans_processors[args.task_name]()
    args.output_mode = hans_output_modes[args.task_name]
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
493
494
495
496
497
498
499
500
501
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
519
520
521
522
523
524
525
526
527
528

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
Sylvain Gugger's avatar
Sylvain Gugger committed
529
530
531
        train_dataset = HansDataset(
            args.data_dir, tokenizer, args.task_name, args.max_seq_length, overwrite_cache=args.overwrite_cache
        )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
532
533
534
535
536
537
538
539
540
541
542
543
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
544
545
546
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
547
548
549
550
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
thomwolf's avatar
thomwolf committed
551
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
552
553
554
555
556
557
558
559
560
561
562
563

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
564
565
566
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
567
568
569
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
570
571
572
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
573
574
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
Sylvain Gugger's avatar
Sylvain Gugger committed
575
            result = evaluate(args, model, tokenizer, label_list, prefix=prefix)
thomwolf's avatar
thomwolf committed
576
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
Nafise Sadat Moosavi's avatar
Nafise Sadat Moosavi committed
577
578
579
580
581
582
583
            results.update(result)

    return results


if __name__ == "__main__":
    main()