test_deepspeed.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import io
16
import json
17
import os
18
import sys
19
import unittest
20
from copy import deepcopy
21
22

from transformers.integrations import is_deepspeed_available
23
from transformers.testing_utils import (
24
    CaptureStd,
25
26
27
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
28
    mockenv_context,
29
30
31
32
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
33
34
35
from transformers.trainer_utils import set_seed


36
37
38
39
40
bindir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(f"{bindir}/../../../tests")
from test_trainer import get_regression_trainer  # noqa


41
42
43
44
set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"


45
46
47
48
49
def load_json(path):
    with open(path) as f:
        return json.load(f)


50
51
52
53
54
55
56
57
58
59
60
61
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


@require_deepspeed
62
@require_torch_gpu
63
64
65
66
67
68
69
70
71
class TrainerIntegrationDeepSpeed(TestCasePlus):
    """ This class is for testing directly via get_regression_trainer """

    def setUp(self):
        super().setUp()
        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )
        self.ds_config_file = f"{self.test_file_dir_str}/ds_config.json"
72
73
        with io.open(self.ds_config_file, "r", encoding="utf-8") as f:
            self.ds_config_dict = json.load(f)
74
75

    def test_fake_notebook_no_launcher(self):
76
        # this setup emulates a notebook where a launcher needs to be emulated by hand
77
        with CaptureStd() as cs:  # noqa
78
79
80
            with mockenv_context(**self.dist_env_1_gpu):
                trainer = get_regression_trainer(local_rank=0, deepspeed=self.ds_config_file)
                trainer.train()
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        # fixme:
        # assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none"

    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = deepcopy(self.ds_config_dict)
            del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = deepcopy(self.ds_config_dict)
            del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_dict)
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
        # this combo is not possible at the moment
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = deepcopy(self.ds_config_dict)
            del ds_config_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_dict)
            with self.assertRaises(Exception) as context:
                trainer.train()
        self.assertTrue("HF scheduler + DeepSpeed optimizer combination is not possible" in str(context.exception))

    def test_hf_optimizer_with_offload(self):
        # must not allow non-DS optimizer when using ZERO-offload
        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = deepcopy(self.ds_config_dict)
            del ds_config_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_dict["zero_optimization"]["cpu_offload"] = True
            # sanity check - should the default config change
            assert (
                "cpu_offload" in ds_config_dict["zero_optimization"]
                and ds_config_dict["zero_optimization"]["cpu_offload"] is True
            ), "ensure the config is set up correctly"
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_dict)
            with self.assertRaises(Exception) as context:
                trainer.train()
        self.assertTrue("ZeRO Offload can only work with DeepSpeed optimizers" in str(context.exception))
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def test_early_get_last_lr(self):
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
                deepspeed=self.ds_config_file,
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
            no_grad_accum_a = trainer.model.a.item()

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
            self.assertEqual(no_grad_accum_a, a)

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def test_gradient_accumulation(self):

        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
                deepspeed=self.ds_config_file,
                per_device_train_batch_size=8,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
                deepspeed=self.ds_config_file,
                per_device_train_batch_size=4,
                gradient_accumulation_steps=2,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

        # training with half the batch size but accumulation steps as 2 should give the same weights
        self.assertEqual(no_grad_accum_a, yes_grad_accum_a)
        self.assertEqual(no_grad_accum_b, yes_grad_accum_b)

        # see the note above how to get identical loss on a small bs
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=5)


@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeed(TestCasePlus):
    """ This class is for testing via an external script """

232
    @require_torch_multi_gpu
233
234
    def test_basic_distributed(self):
        self.run_quick(distributed=True)
235

236
    def test_do_eval_no_train(self):
237
        # we should not fail if train is skipped
238
239
240
241
242
243
244
245
246
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=False,
            extra_args_str="--do_eval",
            remove_args_str="--do_train",
        )
247
248
        val_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
        assert "eval_bleu" in val_metrics
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    # XXX: need to do better validation beyond just that the run was successful
    def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None):
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=distributed,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
        train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
        assert "train_runtime" in train_metrics
263
264
265
266
267
268
269

    def run_trainer(
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
270
        distributed: bool = True,
271
272
273
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
274
        data_dir = self.examples_dir / "test_data/wmt_en_ro"
275
276
277
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
278
279
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
280
281
            --output_dir {output_dir}
            --overwrite_output_dir
282
283
            --max_train_samples 8
            --max_val_samples 8
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --learning_rate 3e-3
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
298
299
            --target_lang ro_RO
            --source_lang en_XX
300
301
302
303
304
305
306
307
308
309
        """.split()

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
310
        script = [f"{self.examples_dir_str}/seq2seq/run_translation.py"]
311
312
313
314
        num_gpus = get_gpu_count() if distributed else 1
        launcher = f"deepspeed --num_gpus {num_gpus}".split()

        cmd = launcher + script + args + ds_args
315
        # keep for quick debug
316
        # print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die
317
318
319
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir