test_deepspeed.py 26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import dataclasses
16
import io
17
import json
18
import os
19
import sys
20
import unittest
21
from copy import deepcopy
22

23
from parameterized import parameterized
24
25
from transformers import TrainingArguments
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.integrations import is_deepspeed_available
27
from transformers.testing_utils import (
28
    CaptureLogger,
29
30
31
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
32
    mockenv_context,
33
34
35
36
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
37
38
39
from transformers.trainer_utils import set_seed


40
41
bindir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(f"{bindir}/../../../tests")
42
from test_trainer import TrainerIntegrationCommon, get_regression_trainer  # noqa
43
44


45
46
set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"
47
T5_SMALL = "t5-small"
48
49


50
51
52
53
54
def load_json(path):
    with open(path) as f:
        return json.load(f)


55
56
57
58
59
60
61
62
63
64
65
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


66
67
68
69
70
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]


71
@require_deepspeed
72
@require_torch_gpu
73
74
75
76
77
class TrainerIntegrationDeepSpeed(TestCasePlus, TrainerIntegrationCommon):
    """

    This class is for testing directly via get_regression_trainer

78
79
80
81
82
83
84
85
86
87
88
89
90
    It mixes in `TrainerIntegrationCommon` which already has a lot of helper validation methods
    which we can re-use here.

    Important: this class' setup can only work with a single gpu because it runs within the current
    pytest worker. For multi-gpu tests use TestDeepSpeedWithLauncher.

    Note: if any of the tests of this class get run there will be at least one gpu occupied by them
    until this pytest worker exits. This is because the gpu memory allocated by the cuda-kernels
    won't be released until this pytest worker exits.

    This may appear as some run-away tests if you watch `nvidia-smi` while other tests that fork new
    processes are run. So there will be one or two "stale" processes reported in `nvidia-smi`. This
    is not a bug.
91
    """
92
93
94

    def setUp(self):
        super().setUp()
95
96
97
98
99

        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

100
101
102
        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        self.ds_config_file = {}
        self.ds_config_file[ZERO2] = f"{self.test_file_dir_str}/ds_config_zero2.json"
        self.ds_config_file[ZERO3] = f"{self.test_file_dir_str}/ds_config_zero3.json"

        # use self.get_config_dict(stage) to use these to ensure the original is not modified
        self.ds_config_dict = {}
        with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f:
            self.ds_config_dict[ZERO2] = json.load(f)
        with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f:
            self.ds_config_dict[ZERO3] = json.load(f)

    def get_config_dict(self, stage):
        """ As the tests modify the dict, always make a copy """
        config = deepcopy(self.ds_config_dict[stage])
        if stage == ZERO3:
            # This setting slows things down, so don't enable it by default unless needed by a test.
            # It's in the file as a demo for users since we want everything to work out of the box even if slower.
            config["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = False
        return config

    # --- These tests are enough to run on one of zero stages --- #
125
126
127
128
129
130
131
132
133
134

    # Test various combos
    # 1. DS scheduler + DS optimizer: this is already tested by most other tests
    # 2. HF scheduler + HF optimizer:
    # 3. DS scheduler + HF optimizer:
    # 4. HF scheduler + DS optimizer:

    def test_hf_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
135
136
137
138
139
140
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
141
142
143
144
145
146
147
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_ds_scheduler_hf_optimizer(self):
        a = 0
        with mockenv_context(**self.dist_env_1_gpu):
148
149
150
151
152
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(a=a, local_rank=0, deepspeed=ds_config_zero2_dict)
153
154
155
156
157
158
159
            trainer.train()
        new_a = trainer.model.a.item()
        self.assertNotEqual(new_a, a)

    def test_hf_scheduler_ds_optimizer(self):
        # this combo is not possible at the moment
        with mockenv_context(**self.dist_env_1_gpu):
160
161
162
163
164
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["scheduler"]  # force default HF Trainer scheduler
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = False
            ds_config_zero2_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero2_dict)
165
166
167
168
169
170
171
            with self.assertRaises(Exception) as context:
                trainer.train()
        self.assertTrue("HF scheduler + DeepSpeed optimizer combination is not possible" in str(context.exception))

    def test_hf_optimizer_with_offload(self):
        # must not allow non-DS optimizer when using ZERO-offload
        with mockenv_context(**self.dist_env_1_gpu):
172
173
174
            ds_config_zero2_dict = self.get_config_dict(ZERO2)
            del ds_config_zero2_dict["optimizer"]  # force default HF Trainer optimizer
            ds_config_zero2_dict["zero_optimization"]["cpu_offload"] = True
175
176
            # sanity check - should the default config change
            assert (
177
178
                "cpu_offload" in ds_config_zero2_dict["zero_optimization"]
                and ds_config_zero2_dict["zero_optimization"]["cpu_offload"] is True
179
            ), "ensure the config is set up correctly"
180
            trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_zero2_dict)
181
182
183
            with self.assertRaises(Exception) as context:
                trainer.train()
        self.assertTrue("ZeRO Offload can only work with DeepSpeed optimizers" in str(context.exception))
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    # --- These tests need to run on both zero stages --- #
    @parameterized.expand(stages)
    def test_fake_notebook_no_launcher(self, stage):
        # this setup emulates a notebook where a launcher needs to be emulated by hand

        # note that unittest resets sys.stdout each test, so `CaptureStd` will work here to capture
        # DeepSpeed log if this test happens to run first in this pytest worker. But it will fail if
        # it's run not as a first test as `sys.stdout` will no longer be the same. So we either have
        # to reset `logger.handlers[0].setStream(sys.stdout)` or directly capture from the logger.
        from deepspeed.utils import logger

        with CaptureLogger(logger) as cs:
            with mockenv_context(**self.dist_env_1_gpu):
                trainer = get_regression_trainer(local_rank=0, deepspeed=self.ds_config_file[stage])
                trainer.train()
        assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none"

    @parameterized.expand(stages)
    def test_early_get_last_lr(self, stage):
204
205
206
207
208
209
210
211
212
213
214
215
216
        # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
        # not run for the first few dozen steps while loss scale is too large, and thus during
        # that time `get_last_lr` will fail if called during that warm up stage,
        #
        # setting `logging_steps=1` forces an early `trainer._maybe_log_save_evaluate()` which calls
        # `self.lr_scheduler.get_last_lr()` and originally it'd fail on the very first step.
        with mockenv_context(**self.dist_env_1_gpu):
            a = b = 0.0
            trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=8,
217
                deepspeed=self.ds_config_file[stage],
218
219
220
221
                per_device_train_batch_size=8,
                logging_steps=1,
            )
            trainer.train()
222
223
224
225
226
227
            post_train_a = trainer.model.a.item()

            # XXX: for some reason the following check fails with zero3 - not a broken but a
            # different qualitative outcome - need to investigate at some point
            if stage == ZERO3:
                return
228
229
230

            # it's enough that train didn't fail for this test, but we must check that
            # optimizer/scheduler didn't run (since if it did this test isn't testing the right thing)
231
            self.assertEqual(post_train_a, a)
232

233
234
    @parameterized.expand(stages)
    def test_gradient_accumulation(self, stage):
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
256
                deepspeed=self.ds_config_file[stage],
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                per_device_train_batch_size=8,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
273
                deepspeed=self.ds_config_file[stage],
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                per_device_train_batch_size=4,
                gradient_accumulation_steps=2,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

        # training with half the batch size but accumulation steps as 2 should give the same weights
        self.assertEqual(no_grad_accum_a, yes_grad_accum_a)
        self.assertEqual(no_grad_accum_b, yes_grad_accum_b)

        # see the note above how to get identical loss on a small bs
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=5)

290
    def check_saved_checkpoints_deepspeed(self, output_dir, freq, total, stage):
291
292
293
        # adapted from TrainerIntegrationCommon.check_saved_checkpoints

        file_list = [WEIGHTS_NAME, "training_args.bin", "trainer_state.json", "config.json"]
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

        if stage == ZERO2:
            ds_file_list = ["mp_rank_00_model_states.pt"]
        elif stage == ZERO3:
            ds_file_list = ["zero_pp_rank_0_mp_rank_00_model_states.pt"]
        else:
            raise ValueError(f"unknown stage {stage}")

        # XXX: this can be recoded and then removed once we require deepspeed>0.3.13
        from packaging import version

        import deepspeed

        if version.parse(deepspeed.__version__) > version.parse("0.3.13"):
            ds_file_list.append("zero_pp_rank_0_mp_rank_00_optim_states.pt")
        else:
            ds_file_list.append("zero_pp_rank_0_mp_rank_00optim_states.pt")
311
312
313

        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
314
            self.assertTrue(os.path.isdir(checkpoint), f"[{stage}] {checkpoint} dir is not found")
315
316
317

            # common files
            for filename in file_list:
318
319
                path = os.path.join(checkpoint, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
320
321
322
323
324
325

            # ds files
            ds_path = os.path.join(checkpoint, f"global_step{step}")
            for filename in ds_file_list:
                # filename = os.path.join(path, filename)
                # print(filename)
326
327
                path = os.path.join(ds_path, filename)
                self.assertTrue(os.path.isfile(path), f"[{stage}] {path} is not found")
328

329
330
    @parameterized.expand(stages)
    def test_save_checkpoints(self, stage):
331
332
        # adapted from  TrainerIntegrationTest.test_save_checkpoints

333
        freq = 5
334
        output_dir = self.get_auto_remove_tmp_dir()
335
        ds_config_dict = self.get_config_dict(stage)
336
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
337
338
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True
339
340
341
342
343
344
345
346
347
348
349

        # save checkpoints
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(
                output_dir=output_dir,
                save_steps=freq,
                deepspeed=ds_config_dict,
            )
            trainer.train()

        total = int(self.n_epochs * 64 / self.batch_size)
350
        self.check_saved_checkpoints_deepspeed(output_dir, freq, total, stage)
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    @parameterized.expand(stages)
    def test_can_resume_training_errors(self, stage):

        with mockenv_context(**self.dist_env_1_gpu):
            ds_config_dict = self.get_config_dict(stage)
            output_dir = self.get_auto_remove_tmp_dir()
            trainer = get_regression_trainer(output_dir=output_dir, deepspeed=ds_config_dict)

            # 1. fail to find any checkpoint - due a fresh output_dir
            with self.assertRaises(Exception) as context:
                trainer.train(resume_from_checkpoint=True)
            self.assertTrue(
                "No valid checkpoint found in output directory" in str(context.exception),
                f"got exception: {context.exception}",
            )
367

368
369
370
371
372
373
374
375
376
377
378
379
            # 2. fail to find a bogus checkpoint
            with self.assertRaises(Exception) as context:
                checkpoint = os.path.join(output_dir, "checkpoint-5")
                trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
            self.assertTrue(
                "Can't find a valid checkpoint at" in str(context.exception), f"got exception: {context.exception}"
            )

    @parameterized.expand(stages)
    def test_can_resume_training_normal(self, stage):
        # adapted from TrainerIntegrationTest.test_can_resume_training
        # test normal resume for each stage separately, error-handling is tested in a different test
380
        output_dir = self.get_auto_remove_tmp_dir()
381
        ds_config_dict = self.get_config_dict(stage)
382
        ds_config_dict["fp16"]["initial_scale_power"] = 1  # force optimizer on the first step
383
384
385
        if stage == ZERO3:
            ds_config_dict["zero_optimization"]["stage3_gather_fp16_weights_on_model_save"] = True

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        kwargs = dict(output_dir=output_dir, train_len=128, save_steps=5, learning_rate=0.1, deepspeed=ds_config_dict)

        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(output_dir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(output_dir, "checkpoint-15")

            # Reinitialize trainer and load model
            trainer = get_regression_trainer(**kwargs)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

419
420
421
422

@slow
@require_deepspeed
@require_torch_gpu
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
class TestDeepSpeedWithLauncher(TestCasePlus):
    """ This class is for testing via an external script - can do multiple gpus """

    # Tests to devise #
    #
    # 1. predict_with_generate on multigpu - need to figure out how to give input sequences so that
    # the 2 gpus will generate prediction sequences that aren't of the same length - this is because
    # we had to code a special feature to sync the gpus when the predicted sequences aren't of the
    # same length. In general this will tested as a side-effect through a variety of other tests -
    # it'll simply hang trying to synchronize with other gpus if this problem is encountered. So as
    # long as we have a few full tests running on zero3 + predict_with_generate this should be
    # mostly covered.
    #
    # but there are 5 variations on beam search in `generate`- with identical code branched with `if
    # synced_gpus`
    #
    # 2. most tests should probably be run on both: zero2 and zero3 configs
    #
441

442
    @require_torch_multi_gpu
443
444
445
    @parameterized.expand(stages)
    def test_basic_distributed(self, stage):
        self.run_and_check(stage=stage, distributed=True)
446

447
448
    @parameterized.expand(stages)
    def test_do_eval_no_train(self, stage):
449
        # we should not fail if train is skipped
450
451
        self.run_and_check(
            stage=stage,
452
453
            eval_steps=1,
            distributed=False,
454
455
            do_train=False,
            do_eval=True,
456
        )
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

    @parameterized.expand(stages)
    def test_resume_train_not_from_ds_checkpoint(self, stage):
        # do normal training and then resume not from the deepspeed checkpoint but explicitly from
        # the saved model dir

        do_train = True
        do_eval = False
        kwargs = dict(stage=stage, eval_steps=1, distributed=True, do_train=do_train, do_eval=do_eval)

        # 1. normal training
        output_dir = self.run_and_check(**kwargs)

        # 2. now resume explicitly from the saved weights, by passing --model_name_or_path output_dir
        # - i.e. the same path the model was saved to in step 1
        output_dir = self.run_trainer(**kwargs, model_name=output_dir)

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

    def do_checks(self, output_dir, do_train=True, do_eval=True):

        if do_train:
            train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
            self.assertIn("train_samples_per_second", train_metrics)
            self.assertGreater(train_metrics["train_samples_per_second"], 0.5)

        if do_eval:
            eval_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
            self.assertIn("eval_bleu", eval_metrics)
            self.assertGreater(eval_metrics["eval_bleu"], 0)
487
488

    # XXX: need to do better validation beyond just that the run was successful
489
490
491
492
493
494
495
496
497
498
499
500
    def run_and_check(
        self,
        stage,
        eval_steps=10,
        distributed=True,
        do_train=True,
        do_eval=True,
        extra_args_str=None,
        remove_args_str=None,
    ):

        # we are doing quality testing so using a small real model
501
        output_dir = self.run_trainer(
502
503
504
            stage=stage,
            model_name=T5_SMALL,
            eval_steps=eval_steps,
505
            num_train_epochs=1,
506
507
            do_train=do_train,
            do_eval=do_eval,
508
509
510
511
            distributed=distributed,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
512
513
514
515

        self.do_checks(output_dir, do_train=do_train, do_eval=do_eval)

        return output_dir
516
517
518

    def run_trainer(
        self,
519
        stage: str,
520
        model_name: str,
521
522
523
524
        eval_steps: int = 10,
        num_train_epochs: int = 1,
        do_train: bool = False,
        do_eval: bool = True,
525
        distributed: bool = True,
526
527
528
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
529
        max_len = 32
530
        data_dir = self.examples_dir / "test_data/wmt_en_ro"
531
532
533
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
534
535
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
536
537
538
539
540
541
542
543
            --output_dir {output_dir}
            --overwrite_output_dir
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
544
545
            --save_steps 0
            --eval_steps {eval_steps}
546
547
548
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
549
550
            --source_lang en
            --target_lang ro
551
        """.split()
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        args.extend(["--source_prefix", '"translate English to Romanian: "'])

        actions = 0
        if do_train:
            actions += 1
            args.extend(
                f"""
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --max_train_samples 100
            --per_device_train_batch_size 2
            --learning_rate 3e-3
            """.split()
            )

        if do_eval:
            actions += 1
            args.extend(
                """
            --do_eval
            --max_val_samples 100
            --per_device_eval_batch_size 2
            """.split()
            )

        assert actions > 0, "need at least do_train or do_eval for the test to run"
578
579
580
581

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

582
        # currently only works for bool args
583
584
585
586
        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

587
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
588
        script = [f"{self.examples_dir_str}/seq2seq/run_translation.py"]
589
590
591
592
        num_gpus = get_gpu_count() if distributed else 1
        launcher = f"deepspeed --num_gpus {num_gpus}".split()

        cmd = launcher + script + args + ds_args
593
        # keep for quick debug
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir

    @parameterized.expand(stages)
    def test_clm(self, stage):
        # this test exercises model.resize_token_embeddings() which requires param gathering outside
        # of forward - it's not used by `run_translation.py`, but it is in `run_clm.py`

        data_dir = self.tests_dir / "fixtures"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path sshleifer/tiny-gpt2
            --train_file {data_dir}/sample_text.txt
            --validation_file {data_dir}/sample_text.txt
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --max_train_samples 10
            --max_val_samples 10
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 1
            --warmup_steps 8
            --block_size 128
            """.split()

        distributed = True
        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
        script = [f"{self.examples_dir_str}/language-modeling/run_clm.py"]
        num_gpus = get_gpu_count() if distributed else 1
        launcher = f"deepspeed --num_gpus {num_gpus}".split()

        cmd = launcher + script + args + ds_args
        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
632
633
634
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir