test_finetune_trainer.py 7.23 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
16
import os
import sys
17
import unittest
Suraj Patil's avatar
Suraj Patil committed
18
19
from unittest.mock import patch

Sylvain Gugger's avatar
Sylvain Gugger committed
20
from transformers.file_utils import is_apex_available
21
from transformers.integrations import is_deepspeed_available, is_fairscale_available
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_multi_gpu,
    require_torch_non_multi_gpu,
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
from .finetune_trainer import main
34

Suraj Patil's avatar
Suraj Patil committed
35

36
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
37
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
Sylvain Gugger's avatar
Sylvain Gugger committed
38
MBART_TINY = "sshleifer/tiny-mbart"
Suraj Patil's avatar
Suraj Patil committed
39
40


41
42
43
44
45
46
47
48
49
50
51
# a candidate for testing_utils
def require_fairscale(test_case):
    """
    Decorator marking a test that requires fairscale
    """
    if not is_fairscale_available():
        return unittest.skip("test requires fairscale")(test_case)
    else:
        return test_case


52
53
54
55
56
57
58
59
60
61
62
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


63
64
65
66
67
68
69
70
71
72
73
# a candidate for testing_utils
def require_apex(test_case):
    """
    Decorator marking a test that requires apex
    """
    if not is_apex_available():
        return unittest.skip("test requires apex")(test_case)
    else:
        return test_case


74
class TestFinetuneTrainer(TestCasePlus):
75
76
    def finetune_trainer_quick(self, distributed=None, deepspeed=False, extra_args_str=None):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, deepspeed, extra_args_str)
77
78
79
80
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
81

82
83
84
85
86
87
88
89
90
91
92
93
94
    @require_torch_non_multi_gpu
    def test_finetune_trainer_no_dist(self):
        self.finetune_trainer_quick()

    # the following 2 tests verify that the trainer can handle distributed and non-distributed with n_gpu > 1
    @require_torch_multi_gpu
    def test_finetune_trainer_dp(self):
        self.finetune_trainer_quick(distributed=False)

    @require_torch_multi_gpu
    def test_finetune_trainer_ddp(self):
        self.finetune_trainer_quick(distributed=True)

95
    # it's crucial to test --sharded_ddp w/ and w/o --fp16
96
97
98
99
100
101
102
103
104
105
    @require_torch_multi_gpu
    @require_fairscale
    def test_finetune_trainer_ddp_sharded_ddp(self):
        self.finetune_trainer_quick(distributed=True, extra_args_str="--sharded_ddp")

    @require_torch_multi_gpu
    @require_fairscale
    def test_finetune_trainer_ddp_sharded_ddp_fp16(self):
        self.finetune_trainer_quick(distributed=True, extra_args_str="--sharded_ddp --fp16")

106
107
108
109
    @require_apex
    def test_finetune_trainer_apex(self):
        self.finetune_trainer_quick(extra_args_str="--fp16 --fp16_backend=apex")

110
111
112
113
114
    @require_torch_multi_gpu
    @require_deepspeed
    def test_finetune_trainer_deepspeed(self):
        self.finetune_trainer_quick(deepspeed=True)

Stas Bekman's avatar
Stas Bekman committed
115
116
117
118
119
    @require_torch_multi_gpu
    @require_deepspeed
    def test_finetune_trainer_deepspeed_grad_acum(self):
        self.finetune_trainer_quick(deepspeed=True, extra_args_str="--gradient_accumulation_steps 2")

120
121
122
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
123
124
125
        output_dir = self.run_trainer(
            eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10, distributed=False
        )
Suraj Patil's avatar
Suraj Patil committed
126

127
128
129
130
131
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
132

133
134
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
135

136
137
138
139
140
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
141

142
    def run_trainer(
143
144
145
146
147
148
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
        distributed: bool = False,
149
        deepspeed: bool = False,
150
        extra_args_str: str = None,
151
    ):
152
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
153
        output_dir = self.get_auto_remove_tmp_dir()
154
        args = f"""
155
156
157
158
159
160
161
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
162
163
            --max_target_length {max_len}
            --val_max_target_length {max_len}
164
165
166
167
168
169
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
170
            --learning_rate 3e-3
171
            --warmup_steps 8
Sylvain Gugger's avatar
Sylvain Gugger committed
172
            --evaluation_strategy steps
173
174
175
176
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
177
            --group_by_length
178
            --label_smoothing_factor 0.1
179
180
181
182
183
184
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
185

186
187
188
        if extra_args_str is not None:
            args.extend(extra_args_str.split())

189
190
191
192
193
194
195
196
197
        if deepspeed:
            ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
            distributed_args = f"""
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = ["deepspeed"] + distributed_args + args + ds_args
            execute_subprocess_async(cmd, env=self.get_env())

        elif distributed:
198
            n_gpu = get_gpu_count()
199
200
201
202
203
204
205
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
206

207
        else:
208
            testargs = ["finetune_trainer.py"] + args
209
210
            with patch.object(sys, "argv", testargs):
                main()
211

212
        return output_dir