test_pipelines_fill_mask.py 17.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
19
20
21
22
23
24
25
26
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
27

28
from .test_pipelines_common import ANY, PipelineTestCaseMeta
29
30


31
32
33
34
@is_pipeline_test
class FillMaskPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_MASKED_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
35

36
37
38
39
40
41
42
43
44
45
46
    @require_tf
    def test_small_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf")
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"},
                {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"},
            ],
        )
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is grouped",
                    "score": 2.1e-05,
                    "token": 38015,
                    "token_str": " grouped",
                },
                {
                    "sequence": "The largest city in France is accuser",
                    "score": 2.1e-05,
                    "token": 25506,
                    "token_str": " accuser",
                },
            ],
        )
66

67
68
69
70
71
72
73
74
75
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"},
            ],
        )
76
77

    @require_torch
78
79
80
81
    def test_small_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt")

        outputs = unmasker("My name is <mask>")
82
        self.assertEqual(
83
            nested_simplify(outputs, decimals=6),
84
            [
85
86
                {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"},
                {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
87
88
89
            ],
        )

90
91
92
93
94
95
96
97
98
99
100
101
102
        outputs = unmasker("The largest city in France is <mask>")
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {
                    "sequence": "The largest city in France is Maul",
                    "score": 2.2e-05,
                    "token": 35676,
                    "token_str": " Maul",
                },
                {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"},
            ],
        )
103

104
105
106
107
108
109
110
111
112
        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"},
                {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"},
            ],
        )
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        outputs = unmasker("My name is <mask> <mask>", top_k=2)

        self.assertEqual(
            nested_simplify(outputs, decimals=6),
            [
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is Maul<mask></s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
                ],
                [
                    {
                        "score": 2.2e-05,
                        "token": 35676,
                        "token_str": " Maul",
                        "sequence": "<s>My name is<mask> Maul</s>",
                    },
                    {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
                ],
            ],
        )

140
141
142
143
144
145
146
147
148
149
150
151
152
    @require_torch_gpu
    def test_fp16_casting(self):
        pipe = pipeline("fill-mask", model="hf-internal-testing/tiny-random-distilbert", device=0, framework="pt")

        # convert model to fp16
        pipe.model.half()

        response = pipe("Paris is the [MASK] of France.")
        # We actually don't care about the result, we just want to make sure
        # it works, meaning the float16 tensor got casted back to float32
        # for postprocessing.
        self.assertIsInstance(response, list)

153
154
155
156
157
158
159
    @slow
    @require_torch
    def test_large_model_pt(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt")
        self.run_large_test(unmasker)

    @slow
160
    @require_tf
161
162
163
164
165
166
167
168
169
170
171
172
    def test_large_model_tf(self):
        unmasker = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf")
        self.run_large_test(unmasker)

    def run_large_test(self, unmasker):
        outputs = unmasker("My name is <mask>")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
                {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"},
            ],
173
        )
174
        outputs = unmasker("The largest city in France is <mask>")
175
176
177
        self.assertEqual(
            nested_simplify(outputs),
            [
178
179
180
181
182
183
184
185
186
187
188
189
                {
                    "sequence": "The largest city in France is Paris",
                    "score": 0.251,
                    "token": 2201,
                    "token_str": " Paris",
                },
                {
                    "sequence": "The largest city in France is Lyon",
                    "score": 0.214,
                    "token": 12790,
                    "token_str": " Lyon",
                },
190
191
            ],
        )
192
193

        outputs = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3)
194
195
196
        self.assertEqual(
            nested_simplify(outputs),
            [
197
198
199
                {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"},
                {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"},
                {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"},
200
201
            ],
        )
202
203

    @require_torch
204
205
206
207
    def test_model_no_pad_pt(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
208
        self.run_pipeline_test(unmasker, [])
209
210

    @require_tf
211
212
213
214
    def test_model_no_pad_tf(self):
        unmasker = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf")
        unmasker.tokenizer.pad_token_id = None
        unmasker.tokenizer.pad_token = None
215
        self.run_pipeline_test(unmasker, [])
216

217
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
218
219
        if tokenizer is None or tokenizer.mask_token_id is None:
            self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
220
221

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
222
223
224
225
        examples = [
            f"This is another {tokenizer.mask_token} test",
        ]
        return fill_masker, examples
226

227
228
229
230
231
232
233
    def run_pipeline_test(self, fill_masker, examples):
        tokenizer = fill_masker.tokenizer
        model = fill_masker.model

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token}",
        )
234
235
236
237
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
238
239
240
241
242
243
244
245
246
247
248
249
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        outputs = fill_masker([f"This is a {tokenizer.mask_token}"])
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
250
251
252
253
254
255
256
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

257
        outputs = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )

        with self.assertRaises(ValueError):
            fill_masker([None])
        # No mask_token is not supported
        with self.assertRaises(PipelineException):
            fill_masker("This is")

        self.run_test_top_k(model, tokenizer)
        self.run_test_targets(model, tokenizer)
        self.run_test_top_k_targets(model, tokenizer)
        self.fill_mask_with_duplicate_targets_and_top_k(model, tokenizer)
288
        self.fill_mask_with_multiple_masks(model, tokenizer)
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

    def run_test_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        targets = list(sorted(vocab.keys()))[:2]
        # Pipeline argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, targets=targets)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
        self.assertEqual(set(el["token"] for el in outputs), target_ids)
        self.assertEqual(set(el["token_str"] for el in outputs), set(targets))

        # Call argument
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        target_ids = {vocab[el] for el in targets}
        self.assertEqual(set(el["token"] for el in outputs), target_ids)
        self.assertEqual(set(el["token_str"] for el in outputs), set(targets))

        # Score equivalence
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=targets)
        tokens = [top_mask["token_str"] for top_mask in outputs]
        scores = [top_mask["score"] for top_mask in outputs]

        unmasked_targets = fill_masker(f"This is a {tokenizer.mask_token}", targets=tokens)
327
        target_scores = [top_mask["score"] for top_mask in unmasked_targets]
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        self.assertEqual(nested_simplify(scores), nested_simplify(target_scores))

        # Raises with invalid
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[""])
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets=[])
        with self.assertRaises(ValueError):
            outputs = fill_masker(f"This is a {tokenizer.mask_token}", targets="")

    def run_test_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer, top_k=2)
        outputs = fill_masker(f"This is a {tokenizer.mask_token}")
        self.assertEqual(
            outputs,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )

        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2)
        self.assertEqual(
            outputs2,
            [
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
            ],
        )
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))

    def run_test_top_k_targets(self, model, tokenizer):
        vocab = tokenizer.get_vocab()
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        # top_k=2, ntargets=3
        targets = list(sorted(vocab.keys()))[:3]
        outputs = fill_masker(f"This is a {tokenizer.mask_token}", top_k=2, targets=targets)

        # If we use the most probably targets, and filter differently, we should still
        # have the same results
        targets2 = [el["token_str"] for el in sorted(outputs, key=lambda x: x["score"], reverse=True)]
        outputs2 = fill_masker(f"This is a {tokenizer.mask_token}", top_k=3, targets=targets2)

        # They should yield exactly the same result
        self.assertEqual(nested_simplify(outputs), nested_simplify(outputs2))
375

376
377
378
379
380
381
382
383
384
385
386
    def fill_mask_with_duplicate_targets_and_top_k(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)
        vocab = tokenizer.get_vocab()
        # String duplicates + id duplicates
        targets = list(sorted(vocab.keys()))[:3]
        targets = [targets[0], targets[1], targets[0], targets[2], targets[1]]
        outputs = fill_masker(f"My name is {tokenizer.mask_token}", targets=targets, top_k=10)

        # The target list contains duplicates, so we can't output more
        # than them
        self.assertEqual(len(outputs), 3)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    def fill_mask_with_multiple_masks(self, model, tokenizer):
        fill_masker = FillMaskPipeline(model=model, tokenizer=tokenizer)

        outputs = fill_masker(
            f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}", top_k=2
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
                [
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                    {"sequence": ANY(str), "score": ANY(float), "token": ANY(int), "token_str": ANY(str)},
                ],
            ],
        )