test_modeling_electra.py 13.3 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre Debut's avatar
Lysandre Debut committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import ElectraConfig, is_torch_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre Debut's avatar
Lysandre Debut committed
22
23

from .test_configuration_common import ConfigTester
24
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre Debut's avatar
Lysandre Debut committed
25
26
27


if is_torch_available():
28
29
    import torch

Lysandre Debut's avatar
Lysandre Debut committed
30
    from transformers import (
31
        MODEL_FOR_PRETRAINING_MAPPING,
Lysandre Debut's avatar
Lysandre Debut committed
32
        ElectraForMaskedLM,
Suraj Patil's avatar
Suraj Patil committed
33
        ElectraForMultipleChoice,
34
        ElectraForPreTraining,
35
        ElectraForQuestionAnswering,
36
37
38
        ElectraForSequenceClassification,
        ElectraForTokenClassification,
        ElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
39
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre Debut's avatar
Lysandre Debut committed
41
42


43
44
class ElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Lysandre Debut's avatar
Lysandre Debut committed
70

71
72
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
73

74
75
        input_mask = None
        if self.use_input_mask:
76
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Lysandre Debut's avatar
Lysandre Debut committed
77

78
79
80
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
81

82
83
84
85
86
87
88
89
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
            fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
Lysandre Debut's avatar
Lysandre Debut committed
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        config = self.get_config()

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
        )

    def get_config(self):
        return ElectraConfig(
106
107
108
109
110
111
112
113
114
115
116
117
118
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
Lysandre Debut's avatar
Lysandre Debut committed
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
    def create_and_check_electra_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
137
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Lysandre Debut's avatar
Lysandre Debut committed
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def create_and_check_electra_for_masked_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
154
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Lysandre Debut's avatar
Lysandre Debut committed
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def create_and_check_electra_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
172
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    def create_and_check_electra_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
189
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
Stas Bekman's avatar
Stas Bekman committed
190
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def create_and_check_electra_for_sequence_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
208
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    def create_and_check_electra_for_question_answering(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
224
        result = model(
225
            input_ids,
226
227
228
229
230
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
231
232
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
233

Suraj Patil's avatar
Suraj Patil committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def create_and_check_electra_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_choices = self.num_choices
        model = ElectraForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
252
        result = model(
Suraj Patil's avatar
Suraj Patil committed
253
254
255
256
257
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
258
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Suraj Patil's avatar
Suraj Patil committed
259

260
261
262
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
263
264
265
266
267
268
269
270
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
271
272
273
274
275
276
277
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
278

279
280
281
282
283
    all_model_classes = (
        (
            ElectraModel,
            ElectraForPreTraining,
            ElectraForMaskedLM,
284
            ElectraForMultipleChoice,
285
286
287
288
289
290
291
            ElectraForTokenClassification,
            ElectraForSequenceClassification,
            ElectraForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
292
    fx_ready_model_classes = all_model_classes
293
    fx_dynamic_ready_model_classes = all_model_classes
Lysandre Debut's avatar
Lysandre Debut committed
294

295
296
297
298
299
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
300
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
301
302
303
304
305
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
        return inputs_dict

Lysandre Debut's avatar
Lysandre Debut committed
306
    def setUp(self):
307
        self.model_tester = ElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
308
309
310
311
312
313
314
315
316
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

317
318
319
320
321
322
    def test_electra_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_electra_model(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
323
324
325
326
327
328
329
330
331
332
333
334
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    def test_for_pre_training(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

335
336
337
338
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

339
340
341
342
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
343
344
345
346
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
347
348
    @slow
    def test_model_from_pretrained(self):
349
        for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
350
            model = ElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
351
            self.assertIsNotNone(model)
352
353
354
355
356
357


@require_torch
class ElectraModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
358
        model = ElectraModel.from_pretrained("google/electra-small-discriminator")
359
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
360
361
362
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
        output = model(input_ids, attention_mask=attention_mask)[0]
        expected_shape = torch.Size((1, 11, 256))
363
364
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
365
            [[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]]
366
367
        )

368
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))