test_modeling_electra.py 11.4 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre Debut's avatar
Lysandre Debut committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre Debut's avatar
Lysandre Debut committed
24
25
26
27
28
29
30
31
32


if is_torch_available():
    from transformers import (
        ElectraConfig,
        ElectraModel,
        ElectraForMaskedLM,
        ElectraForTokenClassification,
        ElectraForPreTraining,
Suraj Patil's avatar
Suraj Patil committed
33
        ElectraForMultipleChoice,
34
        ElectraForSequenceClassification,
35
        ElectraForQuestionAnswering,
Lysandre Debut's avatar
Lysandre Debut committed
36
    )
37
    from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre Debut's avatar
Lysandre Debut committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class ElectraModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Lysandre Debut's avatar
Lysandre Debut committed
66

67
68
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
69

70
71
        input_mask = None
        if self.use_input_mask:
72
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Lysandre Debut's avatar
Lysandre Debut committed
73

74
75
76
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
77

78
79
80
81
82
83
84
85
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
            fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
Lysandre Debut's avatar
Lysandre Debut committed
86

87
88
89
90
91
92
93
94
95
96
97
98
99
        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
100
            return_dict=True,
101
        )
Lysandre Debut's avatar
Lysandre Debut committed
102

103
        return (
Lysandre Debut's avatar
Lysandre Debut committed
104
105
106
107
108
109
110
111
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
112
        )
Lysandre Debut's avatar
Lysandre Debut committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
    def create_and_check_electra_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
131
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Lysandre Debut's avatar
Lysandre Debut committed
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def create_and_check_electra_for_masked_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
147
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
148
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Lysandre Debut's avatar
Lysandre Debut committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def create_and_check_electra_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
166
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    def create_and_check_electra_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
183
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
Stas Bekman's avatar
Stas Bekman committed
184
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def create_and_check_electra_for_sequence_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
201
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
202
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

    def create_and_check_electra_for_question_answering(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        result = model(
219
            input_ids,
220
221
222
223
224
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
225
226
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
227

Suraj Patil's avatar
Suraj Patil committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def create_and_check_electra_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_choices = self.num_choices
        model = ElectraForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
246
        result = model(
Suraj Patil's avatar
Suraj Patil committed
247
248
249
250
251
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
252
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Suraj Patil's avatar
Suraj Patil committed
253

254
255
256
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
257
258
259
260
261
262
263
264
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
265
266
267
268
269
270
271
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
272

273
274
275
276
277
    all_model_classes = (
        (
            ElectraModel,
            ElectraForPreTraining,
            ElectraForMaskedLM,
278
            ElectraForMultipleChoice,
279
280
281
282
283
284
285
            ElectraForTokenClassification,
            ElectraForSequenceClassification,
            ElectraForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre Debut's avatar
Lysandre Debut committed
286
287

    def setUp(self):
288
        self.model_tester = ElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    def test_for_pre_training(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

310
311
312
313
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

314
315
316
317
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
318
319
320
321
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
322
323
    @slow
    def test_model_from_pretrained(self):
324
        for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
325
            model = ElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
326
            self.assertIsNotNone(model)