reformer.rst 9.89 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
Reformer
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
-----------------------------------------------------------------------------------------------------------------------

**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__.
Patrick von Platen's avatar
Patrick von Platen committed
6
7

Overview
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
10
11
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Reformer model was proposed in the paper `Reformer: The Efficient Transformer
<https://arxiv.org/abs/2001.04451.pdf>`__ by Nikita Kitaev, 艁ukasz Kaiser, Anselm Levskaya.
Patrick von Platen's avatar
Patrick von Platen committed
12

Sylvain Gugger's avatar
Sylvain Gugger committed
13
The abstract from the paper is the following:
Patrick von Platen's avatar
Patrick von Platen committed
14

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
*Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can
be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of
N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.*

The Authors' code can be found `here <https://github.com/google/trax/tree/master/trax/models/reformer>`__.
Patrick von Platen's avatar
Patrick von Platen committed
24
25

Axial Positional Encodings
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
32
33
34
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Axial Positional Encodings were first implemented in Google's `trax library
<https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29>`__
and developed by the authors of this model's paper. In models that are treating very long input sequences, the
conventional position id encodings store an embedings vector of size :math:`d` being the :obj:`config.hidden_size` for
every position :math:`i, \ldots, n_s`, with :math:`n_s` being :obj:`config.max_embedding_size`. This means that having
a sequence length of :math:`n_s = 2^{19} \approx 0.5M` and a ``config.hidden_size`` of :math:`d = 2^{10} \approx 1000`
would result in a position encoding matrix:
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38

.. math::
    X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right] 

Sylvain Gugger's avatar
Sylvain Gugger committed
39
which alone has over 500M parameters to store. Axial positional encodings factorize :math:`X_{i,j}` into two matrices:
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43

.. math::
    X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right] 

Sylvain Gugger's avatar
Sylvain Gugger committed
44
and
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

.. math::
    X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right] 

with:

.. math::
    d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .

Therefore the following holds:

.. math::
    X_{i,j} = \begin{cases}
                X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\
                X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor
              \end{cases}

Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
Intuitively, this means that a position embedding vector :math:`x_j \in \mathbb{R}^{d}` is now the composition of two
factorized embedding vectors: :math:`x^1_{k, l} + x^2_{l, k}`, where as the :obj:`config.max_embedding_size` dimension
:math:`j` is factorized into :math:`k \text{ and } l`. This design ensures that each position embedding vector
:math:`x_j` is unique.
Patrick von Platen's avatar
Patrick von Platen committed
66

Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
Using the above example again, axial position encoding with :math:`d^1 = 2^5, d^2 = 2^5, n_s^1 = 2^9, n_s^2 = 2^{10}`
can drastically reduced the number of parameters to :math:`2^{14} + 2^{15} \approx 49000` parameters.
Patrick von Platen's avatar
Patrick von Platen committed
69

Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
In practice, the parameter :obj:`config.axial_pos_embds_dim` is set to a tuple :math:`(d^1, d^2)` which sum has to be
equal to :obj:`config.hidden_size` and :obj:`config.axial_pos_shape` is set to a tuple :math:`(n_s^1, n_s^2)` which
product has to be equal to :obj:`config.max_embedding_size`, which during training has to be equal to the `sequence
length` of the :obj:`input_ids`.
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76


LSH Self Attention
Sylvain Gugger's avatar
Sylvain Gugger committed
77
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
78

Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
82
83
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key
query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in
`Practical and Optimal LSH for Angular Distance <https://arxiv.org/abs/1509.02897>`__ to assign each of the tied key
query embedding vectors to one of :obj:`config.num_buckets` possible buckets. The premise is that the more "similar"
key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to
Sylvain Gugger's avatar
Sylvain Gugger committed
84
the same bucket.
Sylvain Gugger's avatar
Sylvain Gugger committed
85

Sylvain Gugger's avatar
Sylvain Gugger committed
86
The accuracy of the LSH mechanism can be improved by increasing :obj:`config.num_hashes` or directly the argument
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
91
92
93
94
95
:obj:`num_hashes` of the forward function so that the output of the LSH self attention better approximates the output
of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks
each of length :obj:`config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors
(which are tied to themselves) and to the key embedding vectors of :obj:`config.lsh_num_chunks_before` previous
neighboring chunks and :obj:`config.lsh_num_chunks_after` following neighboring chunks.

For more information, see the `original Paper <https://arxiv.org/abs/2001.04451>`__ or this great `blog post
<https://www.pragmatic.ml/reformer-deep-dive/>`__.

Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
Note that :obj:`config.num_buckets` can also be factorized into a list :math:`(n_{\text{buckets}}^1,
n_{\text{buckets}}^2)`. This way instead of assigning the query key embedding vectors to one of :math:`(1,\ldots,
n_{\text{buckets}})` they are assigned to one of :math:`(1-1,\ldots, n_{\text{buckets}}^1-1, \ldots,
1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)`. This is crucial for very long sequences to
save memory.
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
105
106
107
108

When training a model from scratch, it is recommended to leave :obj:`config.num_buckets=None`, so that depending on the
sequence length a good value for :obj:`num_buckets` is calculated on the fly. This value will then automatically be
saved in the config and should be reused for inference.

Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Patrick von Platen's avatar
Patrick von Platen committed
109
110


Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
Local Self Attention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
113

Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of length :obj:`config.local_chunk_length` the query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors of :obj:`config.local_num_chunks_before`
previous neighboring chunks and :obj:`config.local_num_chunks_after` following neighboring chunks.
Patrick von Platen's avatar
Patrick von Platen committed
118

Sylvain Gugger's avatar
Sylvain Gugger committed
119
120
121
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Patrick von Platen's avatar
Patrick von Platen committed
122
123


Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
Training
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
126

Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
During training, we must ensure that the sequence length is set to a value that can be divided by the least common
multiple of :obj:`config.lsh_chunk_length` and :obj:`config.local_chunk_length` and that the parameters of the Axial
Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can
easily be trained on sequences as long as 64000 tokens.
Patrick von Platen's avatar
Patrick von Platen committed
131

Sylvain Gugger's avatar
Sylvain Gugger committed
132
For training, the :class:`~transformers.ReformerModelWithLMHead` should be used as follows:
Patrick von Platen's avatar
Patrick von Platen committed
133

Sylvain Gugger's avatar
Sylvain Gugger committed
134
.. code-block::
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
139
140

  input_ids = tokenizer.encode('This is a sentence from the training data', return_tensors='pt')
  loss = model(input_ids, labels=input_ids)[0]


ReformerConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
141
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147

.. autoclass:: transformers.ReformerConfig
    :members:


ReformerTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
148
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
149
150

.. autoclass:: transformers.ReformerTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
151
    :members: save_vocabulary
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154


ReformerModel
Sylvain Gugger's avatar
Sylvain Gugger committed
155
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
156
157

.. autoclass:: transformers.ReformerModel
Sylvain Gugger's avatar
Sylvain Gugger committed
158
    :members: forward
Patrick von Platen's avatar
Patrick von Platen committed
159
160
161


ReformerModelWithLMHead
Sylvain Gugger's avatar
Sylvain Gugger committed
162
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
163
164

.. autoclass:: transformers.ReformerModelWithLMHead
Sylvain Gugger's avatar
Sylvain Gugger committed
165
    :members: forward
166
167


168
ReformerForMaskedLM
Sylvain Gugger's avatar
Sylvain Gugger committed
169
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
170
171

.. autoclass:: transformers.ReformerForMaskedLM
Sylvain Gugger's avatar
Sylvain Gugger committed
172
    :members: forward
173
174


175
ReformerForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
176
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
177
178

.. autoclass:: transformers.ReformerForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
179
    :members: forward
180
181


182
ReformerForQuestionAnswering
Sylvain Gugger's avatar
Sylvain Gugger committed
183
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
184
185

.. autoclass:: transformers.ReformerForQuestionAnswering
Sylvain Gugger's avatar
Sylvain Gugger committed
186
    :members: forward