reformer.rst 9.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
Reformer
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
-----------------------------------------------------------------------------------------------------------------------

**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__.
Patrick von Platen's avatar
Patrick von Platen committed
6
7

Overview
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
10
11
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Reformer model was proposed in the paper `Reformer: The Efficient Transformer
<https://arxiv.org/abs/2001.04451.pdf>`__ by Nikita Kitaev, 艁ukasz Kaiser, Anselm Levskaya.
Patrick von Platen's avatar
Patrick von Platen committed
12

Sylvain Gugger's avatar
Sylvain Gugger committed
13
The abstract from the paper is the following: 
Patrick von Platen's avatar
Patrick von Platen committed
14

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
*Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can
be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of
N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.*

The Authors' code can be found `here <https://github.com/google/trax/tree/master/trax/models/reformer>`__.
Patrick von Platen's avatar
Patrick von Platen committed
24
25

Axial Positional Encodings
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
32
33
34
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Axial Positional Encodings were first implemented in Google's `trax library
<https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29>`__
and developed by the authors of this model's paper. In models that are treating very long input sequences, the
conventional position id encodings store an embedings vector of size :math:`d` being the :obj:`config.hidden_size` for
every position :math:`i, \ldots, n_s`, with :math:`n_s` being :obj:`config.max_embedding_size`. This means that having
a sequence length of :math:`n_s = 2^{19} \approx 0.5M` and a ``config.hidden_size`` of :math:`d = 2^{10} \approx 1000`
would result in a position encoding matrix:
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

.. math::
    X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right] 

which alone has over 500M parameters to store. Axial positional encodings factorize :math:`X_{i,j}` into two matrices: 

.. math::
    X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right] 

and 

.. math::
    X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right] 

with:

.. math::
    d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .

Therefore the following holds:

.. math::
    X_{i,j} = \begin{cases}
                X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\
                X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor
              \end{cases}

Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
Intuitively, this means that a position embedding vector :math:`x_j \in \mathbb{R}^{d}` is now the composition of two
factorized embedding vectors: :math:`x^1_{k, l} + x^2_{l, k}`, where as the :obj:`config.max_embedding_size` dimension
:math:`j` is factorized into :math:`k \text{ and } l`. This design ensures that each position embedding vector
:math:`x_j` is unique.
Patrick von Platen's avatar
Patrick von Platen committed
66

Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
Using the above example again, axial position encoding with :math:`d^1 = 2^5, d^2 = 2^5, n_s^1 = 2^9, n_s^2 = 2^{10}`
can drastically reduced the number of parameters to :math:`2^{14} + 2^{15} \approx 49000` parameters.
Patrick von Platen's avatar
Patrick von Platen committed
69

Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
In practice, the parameter :obj:`config.axial_pos_embds_dim` is set to a tuple :math:`(d^1, d^2)` which sum has to
be equal to :obj:`config.hidden_size` and :obj:`config.axial_pos_shape` is set to a tuple :math:`(n_s^1, n_s^2)` which
product has to be equal to :obj:`config.max_embedding_size`, which during training has to be equal to the
`sequence length` of the :obj:`input_ids`.
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76


LSH Self Attention
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key
query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in
`Practical and Optimal LSH for Angular Distance <https://arxiv.org/abs/1509.02897>`__ to assign each of the tied key
query embedding vectors to one of :obj:`config.num_buckets` possible buckets. The premise is that the more "similar"
key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to
the same bucket. 

The accuracy of the LSH mechanism can be improved by increasing :obj:`config.num_hashes` or directly the argument 
:obj:`num_hashes` of the forward function so that the output of the LSH self attention better approximates the output
of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks
each of length :obj:`config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors
(which are tied to themselves) and to the key embedding vectors of :obj:`config.lsh_num_chunks_before` previous
neighboring chunks and :obj:`config.lsh_num_chunks_after` following neighboring chunks.

For more information, see the `original Paper <https://arxiv.org/abs/2001.04451>`__ or this great `blog post
<https://www.pragmatic.ml/reformer-deep-dive/>`__.

Note that :obj:`config.num_buckets` can also be factorized into a list
:math:`(n_{\text{buckets}}^1, n_{\text{buckets}}^2)`. This way instead of assigning the query key embedding vectors to
one of :math:`(1,\ldots, n_{\text{buckets}})` they are assigned to one of
:math:`(1-1,\ldots, n_{\text{buckets}}^1-1, \ldots, 1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)`.
This is crucial for very long sequences to save memory.

When training a model from scratch, it is recommended to leave :obj:`config.num_buckets=None`, so that depending on the
sequence length a good value for :obj:`num_buckets` is calculated on the fly. This value will then automatically be
saved in the config and should be reused for inference.

Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Patrick von Platen's avatar
Patrick von Platen committed
108
109


Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
Local Self Attention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
112

Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
115
116
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of length :obj:`config.local_chunk_length` the query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors of :obj:`config.local_num_chunks_before`
previous neighboring chunks and :obj:`config.local_num_chunks_after` following neighboring chunks.
Patrick von Platen's avatar
Patrick von Platen committed
117

Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
120
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Patrick von Platen's avatar
Patrick von Platen committed
121
122


Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
Training
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
125

Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
During training, we must ensure that the sequence length is set to a value that can be divided by the least common
multiple of :obj:`config.lsh_chunk_length` and :obj:`config.local_chunk_length` and that the parameters of the Axial
Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can
easily be trained on sequences as long as 64000 tokens.
Patrick von Platen's avatar
Patrick von Platen committed
130

Sylvain Gugger's avatar
Sylvain Gugger committed
131
For training, the :class:`~transformers.ReformerModelWithLMHead` should be used as follows: 
Patrick von Platen's avatar
Patrick von Platen committed
132

Sylvain Gugger's avatar
Sylvain Gugger committed
133
.. code-block::
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139

  input_ids = tokenizer.encode('This is a sentence from the training data', return_tensors='pt')
  loss = model(input_ids, labels=input_ids)[0]


ReformerConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
140
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146

.. autoclass:: transformers.ReformerConfig
    :members:


ReformerTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
147
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
148
149

.. autoclass:: transformers.ReformerTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
150
    :members: save_vocabulary
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153


ReformerModel
Sylvain Gugger's avatar
Sylvain Gugger committed
154
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
155
156

.. autoclass:: transformers.ReformerModel
Sylvain Gugger's avatar
Sylvain Gugger committed
157
    :members: forward
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160


ReformerModelWithLMHead
Sylvain Gugger's avatar
Sylvain Gugger committed
161
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Patrick von Platen's avatar
Patrick von Platen committed
162
163

.. autoclass:: transformers.ReformerModelWithLMHead
Sylvain Gugger's avatar
Sylvain Gugger committed
164
    :members: forward
165
166


167
ReformerForMaskedLM
Sylvain Gugger's avatar
Sylvain Gugger committed
168
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
169
170

.. autoclass:: transformers.ReformerForMaskedLM
Sylvain Gugger's avatar
Sylvain Gugger committed
171
    :members: forward
172
173


174
ReformerForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
175
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
176
177

.. autoclass:: transformers.ReformerForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
178
    :members: forward
179
180


181
ReformerForQuestionAnswering
Sylvain Gugger's avatar
Sylvain Gugger committed
182
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
183
184

.. autoclass:: transformers.ReformerForQuestionAnswering
Sylvain Gugger's avatar
Sylvain Gugger committed
185
    :members: forward