test_finetune_trainer.py 7.9 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
import os
import sys
from unittest.mock import patch

5
6
from transformers import BertTokenizer, EncoderDecoderModel, is_torch_available
from transformers.file_utils import is_datasets_available
7
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, slow
Sylvain Gugger's avatar
Sylvain Gugger committed
8
9
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
10

11
12
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
Suraj Patil's avatar
Suraj Patil committed
13
from .test_seq2seq_examples import MBART_TINY
14

Suraj Patil's avatar
Suraj Patil committed
15

16
17
if is_torch_available():
    import torch
Suraj Patil's avatar
Suraj Patil committed
18

19
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
20
21
22
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


23
24
25
26
27
28
29
class TestFinetuneTrainer(TestCasePlus):
    def test_finetune_trainer(self):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
30

31
32
33
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
34
        output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
Suraj Patil's avatar
Suraj Patil committed
35

36
37
38
39
40
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
41

42
43
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
44

45
46
47
48
49
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
50

51
52
53
54
55
56
57
58
59
60
61
    @slow
    def test_finetune_bert2bert(self):
        if not is_datasets_available():
            return

        import datasets

        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
62
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
63
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
64
        bert2bert.config.max_length = 128
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        rouge = datasets.load_metric("rouge")

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all([len(x) == 512 for x in inputs.input_ids])
            assert all([len(x) == 128 for x in outputs.input_ids])

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
                "rouge2"
            ].mid

            return {
                "rouge2_precision": round(rouge_output.precision, 4),
                "rouge2_recall": round(rouge_output.recall, 4),
                "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
            }

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
            evaluate_during_training=True,
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        # start training
        trainer.train()

164
    def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
165
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
166
        output_dir = self.get_auto_remove_tmp_dir()
167
        args = f"""
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --learning_rate 3e-4
            --warmup_steps 8
            --evaluate_during_training
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
198

199
200
        n_gpu = torch.cuda.device_count()
        if n_gpu > 1:
201
202
203
204
205
206
207
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
208
209
        else:
            # 0 or 1 gpu
210
            testargs = ["finetune_trainer.py"] + args
211
212
            with patch.object(sys, "argv", testargs):
                main()
213

214
        return output_dir