"vscode:/vscode.git/clone" did not exist on "50e62a4cb4d503e3559b88838b8cf9f745fef516"
modelcard.py 29.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
23
24
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
import requests
27
import yaml
Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
from huggingface_hub import HfApi

from . import __version__
31
32
33
34
from .file_utils import (
    CONFIG_NAME,
    MODEL_CARD_NAME,
    TF2_WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    WEIGHTS_NAME,
36
37
    cached_path,
    hf_bucket_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
    is_datasets_available,
    is_offline_mode,
Aymeric Augustin's avatar
Aymeric Augustin committed
40
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
    is_tokenizers_available,
    is_torch_available,
43
)
44
from .models.auto.modeling_auto import (
45
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
Sylvain Gugger's avatar
Sylvain Gugger committed
46
47
48
49
50
51
52
53
54
55
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
)
56
57
from .training_args import ParallelMode
from .utils import logging
Sylvain Gugger's avatar
Sylvain Gugger committed
58

thomwolf's avatar
thomwolf committed
59

Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
64
65
66
67
68
69
TASK_MAPPING = {
    "text-generation": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    "image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    "fill-mask": MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    "object-detection": MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    "question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    "text2text-generation": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "text-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    "table-question-answering": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    "token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
70
    "audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
}
thomwolf's avatar
thomwolf committed
72

Lysandre Debut's avatar
Lysandre Debut committed
73
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
74
75


76
class ModelCard:
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
    r"""
    Structured Model Card class. Store model card as well as methods for loading/downloading/saving model cards.
thomwolf's avatar
thomwolf committed
79

Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
    Please read the following paper for details and explanation on the sections: "Model Cards for Model Reporting" by
    Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
    Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993
thomwolf's avatar
thomwolf committed
83

Sylvain Gugger's avatar
Sylvain Gugger committed
84
    Note: A model card can be loaded and saved to disk.
thomwolf's avatar
thomwolf committed
85

Lysandre's avatar
Lysandre committed
86
    Parameters:
thomwolf's avatar
thomwolf committed
87
    """
88

thomwolf's avatar
thomwolf committed
89
    def __init__(self, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
        warnings.warn(
            "The class `ModelCard` is deprecated and will be removed in version 5 of Transformers", FutureWarning
        )
93
        # Recommended attributes from https://arxiv.org/abs/1810.03993 (see papers)
94
95
96
97
98
99
100
101
102
        self.model_details = kwargs.pop("model_details", {})
        self.intended_use = kwargs.pop("intended_use", {})
        self.factors = kwargs.pop("factors", {})
        self.metrics = kwargs.pop("metrics", {})
        self.evaluation_data = kwargs.pop("evaluation_data", {})
        self.training_data = kwargs.pop("training_data", {})
        self.quantitative_analyses = kwargs.pop("quantitative_analyses", {})
        self.ethical_considerations = kwargs.pop("ethical_considerations", {})
        self.caveats_and_recommendations = kwargs.pop("caveats_and_recommendations", {})
thomwolf's avatar
thomwolf committed
103
104
105
106
107
108

        # Open additional attributes
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
109
                logger.error(f"Can't set {key} with value {value} for {self}")
thomwolf's avatar
thomwolf committed
110
111
                raise err

thomwolf's avatar
thomwolf committed
112
    def save_pretrained(self, save_directory_or_file):
Lysandre's avatar
Lysandre committed
113
        """Save a model card object to the directory or file `save_directory_or_file`."""
thomwolf's avatar
thomwolf committed
114
115
116
117
118
        if os.path.isdir(save_directory_or_file):
            # If we save using the predefined names, we can load using `from_pretrained`
            output_model_card_file = os.path.join(save_directory_or_file, MODEL_CARD_NAME)
        else:
            output_model_card_file = save_directory_or_file
thomwolf's avatar
thomwolf committed
119
120

        self.to_json_file(output_model_card_file)
121
        logger.info(f"Model card saved in {output_model_card_file}")
thomwolf's avatar
thomwolf committed
122
123
124

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
        r"""
        Instantiate a :class:`~transformers.ModelCard` from a pre-trained model model card.
thomwolf's avatar
thomwolf committed
127
128
129
130

        Parameters:
            pretrained_model_name_or_path: either:

131
132
133
                - a string, the `model id` of a pretrained model card hosted inside a model repo on huggingface.co.
                  Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a
                  user or organization name, like ``dbmdz/bert-base-german-cased``.
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
                - a path to a `directory` containing a model card file saved using the
                  :func:`~transformers.ModelCard.save_pretrained` method, e.g.: ``./my_model_directory/``.
136
                - a path or url to a saved model card JSON `file`, e.g.: ``./my_model_directory/modelcard.json``.
thomwolf's avatar
thomwolf committed
137
138

            cache_dir: (`optional`) string:
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140
                Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache
                should not be used.
thomwolf's avatar
thomwolf committed
141
142
143

            kwargs: (`optional`) dict: key/value pairs with which to update the ModelCard object after loading.

Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
                - The values in kwargs of any keys which are model card attributes will be used to override the loaded
                  values.
                - Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the
                  `return_unused_kwargs` keyword parameter.
thomwolf's avatar
thomwolf committed
148
149

            proxies: (`optional`) dict, default None:
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.
thomwolf's avatar
thomwolf committed
152

153
            find_from_standard_name: (`optional`) boolean, default True:
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
                If the pretrained_model_name_or_path ends with our standard model or config filenames, replace them
                with our standard modelcard filename. Can be used to directly feed a model/config url and access the
                colocated modelcard.
157

thomwolf's avatar
thomwolf committed
158
159
160
            return_unused_kwargs: (`optional`) bool:

                - If False, then this function returns just the final model card object.
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
163
                - If True, then this functions returns a tuple `(model card, unused_kwargs)` where `unused_kwargs` is a
                  dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of
                  kwargs which has not been used to update `ModelCard` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
164
165
166

        Examples::

167
            modelcard = ModelCard.from_pretrained('bert-base-uncased')    # Download model card from huggingface.co and cache.
168
169
            modelcard = ModelCard.from_pretrained('./test/saved_model/')  # E.g. model card was saved using `save_pretrained('./test/saved_model/')`
            modelcard = ModelCard.from_pretrained('./test/saved_model/modelcard.json')
170
            modelcard = ModelCard.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
thomwolf's avatar
thomwolf committed
171
172

        """
173
174
175
        # This imports every model so let's do it dynamically here.
        from transformers.models.auto.configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP

176
177
178
179
        cache_dir = kwargs.pop("cache_dir", None)
        proxies = kwargs.pop("proxies", None)
        find_from_standard_name = kwargs.pop("find_from_standard_name", True)
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
180
181
182
183
184
        from_pipeline = kwargs.pop("_from_pipeline", None)

        user_agent = {"file_type": "model_card"}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
185

186
        if pretrained_model_name_or_path in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
187
188
            # For simplicity we use the same pretrained url than the configuration files
            # but with a different suffix (modelcard.json). This suffix is replaced below.
189
            model_card_file = ALL_PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
190
191
192
193
194
        elif os.path.isdir(pretrained_model_name_or_path):
            model_card_file = os.path.join(pretrained_model_name_or_path, MODEL_CARD_NAME)
        elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            model_card_file = pretrained_model_name_or_path
        else:
Julien Chaumond's avatar
Julien Chaumond committed
195
            model_card_file = hf_bucket_url(pretrained_model_name_or_path, filename=MODEL_CARD_NAME, mirror=None)
thomwolf's avatar
thomwolf committed
196

197
198
199
200
201
        if find_from_standard_name or pretrained_model_name_or_path in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
            model_card_file = model_card_file.replace(CONFIG_NAME, MODEL_CARD_NAME)
            model_card_file = model_card_file.replace(WEIGHTS_NAME, MODEL_CARD_NAME)
            model_card_file = model_card_file.replace(TF2_WEIGHTS_NAME, MODEL_CARD_NAME)

thomwolf's avatar
thomwolf committed
202
        try:
thomwolf's avatar
thomwolf committed
203
            # Load from URL or cache if already cached
204
205
206
            resolved_model_card_file = cached_path(
                model_card_file, cache_dir=cache_dir, proxies=proxies, user_agent=user_agent
            )
thomwolf's avatar
thomwolf committed
207
            if resolved_model_card_file == model_card_file:
208
                logger.info(f"loading model card file {model_card_file}")
thomwolf's avatar
thomwolf committed
209
            else:
210
                logger.info(f"loading model card file {model_card_file} from cache at {resolved_model_card_file}")
thomwolf's avatar
thomwolf committed
211
            # Load model card
212
            modelcard = cls.from_json_file(resolved_model_card_file)
thomwolf's avatar
thomwolf committed
213

214
        except (EnvironmentError, json.JSONDecodeError):
thomwolf's avatar
thomwolf committed
215
            # We fall back on creating an empty model card
216
            modelcard = cls()
thomwolf's avatar
thomwolf committed
217
218
219
220

        # Update model card with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
221
222
            if hasattr(modelcard, key):
                setattr(modelcard, key, value)
thomwolf's avatar
thomwolf committed
223
224
225
226
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

227
        logger.info(f"Model card: {modelcard}")
thomwolf's avatar
thomwolf committed
228
        if return_unused_kwargs:
229
            return modelcard, kwargs
thomwolf's avatar
thomwolf committed
230
        else:
231
            return modelcard
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
239
240

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `ModelCard` from a Python dictionary of parameters."""
        return cls(**json_object)

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `ModelCard` from a json file of parameters."""
241
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
            text = reader.read()
        dict_obj = json.loads(text)
        return cls(**dict_obj)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
Patrick von Platen's avatar
Patrick von Platen committed
262
        """Save this instance to a json file."""
263
        with open(json_file_path, "w", encoding="utf-8") as writer:
thomwolf's avatar
thomwolf committed
264
            writer.write(self.to_json_string())
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
267
268
269
270
271
272
273
274


AUTOGENERATED_COMMENT = """
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
"""


TASK_TAG_TO_NAME_MAPPING = {
    "fill-mask": "Masked Language Modeling",
Sylvain Gugger's avatar
Sylvain Gugger committed
275
    "image-classification": "Image Classification",
Sylvain Gugger's avatar
Sylvain Gugger committed
276
    "multiple-choice": "Multiple Choice",
Sylvain Gugger's avatar
Sylvain Gugger committed
277
    "object-detection": "Object Detection",
Sylvain Gugger's avatar
Sylvain Gugger committed
278
279
    "question-answering": "Question Answering",
    "summarization": "Summarization",
Sylvain Gugger's avatar
Sylvain Gugger committed
280
    "table-question-answering": "Table Question Answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    "text-classification": "Text Classification",
    "text-generation": "Causal Language Modeling",
    "text2text-generation": "Sequence-to-sequence Language Modeling",
    "token-classification": "Token Classification",
    "translation": "Translation",
    "zero-shot-classification": "Zero Shot Classification",
}


METRIC_TAGS = [
    "accuracy",
    "bleu",
    "f1",
    "matthews_correlation",
    "pearsonr",
    "precision",
    "recall",
    "rouge",
    "sacrebleu",
    "spearmanr",
]


def _listify(obj):
    if obj is None:
        return []
    elif isinstance(obj, str):
        return [obj]
    else:
        return obj


313
314
315
316
317
def _insert_values_as_list(metadata, name, values):
    if values is None:
        return metadata
    if isinstance(values, str):
        values = [values]
318
    values = [v for v in values if v is not None]
319
320
321
322
    if len(values) == 0:
        return metadata
    metadata[name] = values
    return metadata
Sylvain Gugger's avatar
Sylvain Gugger committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336


def infer_metric_tags_from_eval_results(eval_results):
    if eval_results is None:
        return {}
    result = {}
    for key in eval_results.keys():
        if key.lower().replace(" ", "_") in METRIC_TAGS:
            result[key.lower().replace(" ", "_")] = key
        elif key.lower() == "rouge1":
            result["rouge"] = key
    return result


337
338
339
340
341
342
343
def _insert_value(metadata, name, value):
    if value is None:
        return metadata
    metadata[name] = value
    return metadata


Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def is_hf_dataset(dataset):
    if not is_datasets_available():
        return False

    from datasets import Dataset

    return isinstance(dataset, Dataset)


def _get_mapping_values(mapping):
    result = []
    for v in mapping.values():
        if isinstance(v, (tuple, list)):
            result += list(v)
        else:
            result.append(v)
    return result


Sylvain Gugger's avatar
Sylvain Gugger committed
363
364
365
366
367
368
369
@dataclass
class TrainingSummary:
    model_name: str
    language: Optional[Union[str, List[str]]] = None
    license: Optional[str] = None
    tags: Optional[Union[str, List[str]]] = None
    finetuned_from: Optional[str] = None
Sylvain Gugger's avatar
Sylvain Gugger committed
370
    tasks: Optional[Union[str, List[str]]] = None
Sylvain Gugger's avatar
Sylvain Gugger committed
371
372
373
374
375
376
377
378
379
    dataset: Optional[Union[str, List[str]]] = None
    dataset_tags: Optional[Union[str, List[str]]] = None
    dataset_args: Optional[Union[str, List[str]]] = None
    eval_results: Optional[Dict[str, float]] = None
    eval_lines: Optional[List[str]] = None
    hyperparameters: Optional[Dict[str, Any]] = None

    def __post_init__(self):
        # Infer default license from the checkpoint used, if possible.
Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
382
383
384
385
        if (
            self.license is None
            and not is_offline_mode()
            and self.finetuned_from is not None
            and len(self.finetuned_from) > 0
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388
389
390
391
392
393
394
            try:
                model_info = HfApi().model_info(self.finetuned_from)
                for tag in model_info.tags:
                    if tag.startswith("license:"):
                        self.license = tag[8:]
            except requests.exceptions.HTTPError:
                pass

    def create_model_index(self, metric_mapping):
395
        model_index = {"name": self.model_name}
Sylvain Gugger's avatar
Sylvain Gugger committed
396
397
398
399
400
401
402
403
404
405
406

        # Dataset mapping tag -> name
        dataset_names = _listify(self.dataset)
        dataset_tags = _listify(self.dataset_tags)
        dataset_args = _listify(self.dataset_args)
        if len(dataset_args) < len(dataset_tags):
            dataset_args = dataset_args + [None] * (len(dataset_tags) - len(dataset_args))
        dataset_mapping = {tag: name for tag, name in zip(dataset_tags, dataset_names)}
        dataset_arg_mapping = {tag: arg for tag, arg in zip(dataset_tags, dataset_args)}

        task_mapping = {
Sylvain Gugger's avatar
Sylvain Gugger committed
407
            task: TASK_TAG_TO_NAME_MAPPING[task] for task in _listify(self.tasks) if task in TASK_TAG_TO_NAME_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
408
409
410
411
412
413
414
415
416
        }

        if len(task_mapping) == 0 and len(dataset_mapping) == 0:
            return model_index
        if len(task_mapping) == 0:
            task_mapping = {None: None}
        if len(dataset_mapping) == 0:
            dataset_mapping = {None: None}

417
418
419
420
        model_index["results"] = []

        # One entry per dataset and per task
        all_possibilities = [(task_tag, ds_tag) for task_tag in task_mapping for ds_tag in dataset_mapping]
Sylvain Gugger's avatar
Sylvain Gugger committed
421
        for task_tag, ds_tag in all_possibilities:
422
            result = {}
Sylvain Gugger's avatar
Sylvain Gugger committed
423
            if task_tag is not None:
424
425
                result["task"] = {"name": task_mapping[task_tag], "type": task_tag}

Sylvain Gugger's avatar
Sylvain Gugger committed
426
            if ds_tag is not None:
427
                result["dataset"] = {"name": dataset_mapping[ds_tag], "type": ds_tag}
Sylvain Gugger's avatar
Sylvain Gugger committed
428
                if dataset_arg_mapping[ds_tag] is not None:
429
430
                    result["dataset"]["args"] = dataset_arg_mapping[ds_tag]

Sylvain Gugger's avatar
Sylvain Gugger committed
431
            if len(metric_mapping) > 0:
432
                result["metrics"] = []
Sylvain Gugger's avatar
Sylvain Gugger committed
433
                for metric_tag, metric_name in metric_mapping.items():
434
435
436
437
438
439
440
                    result["metrics"].append(
                        {
                            "name": metric_name,
                            "type": metric_tag,
                            "value": self.eval_results[metric_name],
                        }
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
441

442
443
444
445
446
            # Remove partial results to avoid the model card being rejected.
            if "task" in result and "dataset" in result and "metrics" in result:
                model_index["results"].append(result)
            else:
                logger.info(f"Dropping the following result as it does not have all the necessary field:\n{result}")
Sylvain Gugger's avatar
Sylvain Gugger committed
447

448
449
450
451
452
453
454
455
456
457
458
        return [model_index]

    def create_metadata(self):
        metric_mapping = infer_metric_tags_from_eval_results(self.eval_results)

        metadata = {}
        metadata = _insert_values_as_list(metadata, "language", self.language)
        metadata = _insert_value(metadata, "license", self.license)
        metadata = _insert_values_as_list(metadata, "tags", self.tags)
        metadata = _insert_values_as_list(metadata, "datasets", self.dataset_tags)
        metadata = _insert_values_as_list(metadata, "metrics", list(metric_mapping.keys()))
459
        metadata["model-index"] = self.create_model_index(metric_mapping)
460
461

        return metadata
Sylvain Gugger's avatar
Sylvain Gugger committed
462
463
464
465

    def to_model_card(self):
        model_card = ""

466
        metadata = yaml.dump(self.create_metadata(), sort_keys=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        if len(metadata) > 0:
            model_card = f"---\n{metadata}---\n"

        # Now the model card for realsies.
        model_card += AUTOGENERATED_COMMENT

        model_card += f"\n# {self.model_name}\n\n"

        if self.finetuned_from is None:
            model_card += "This model was trained from scratch on "
        else:
            model_card += f"This model is a fine-tuned version of [{self.finetuned_from}](https://huggingface.co/{self.finetuned_from}) on "

        if self.dataset is None:
481
            model_card += "an unknown dataset."
Sylvain Gugger's avatar
Sylvain Gugger committed
482
483
484
        else:
            if isinstance(self.dataset, str):
                model_card += f"the {self.dataset} dataset."
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
            elif isinstance(self.dataset, (tuple, list)) and len(self.dataset) == 1:
                model_card += f"the {self.dataset[0]} dataset."
Sylvain Gugger's avatar
Sylvain Gugger committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            else:
                model_card += (
                    ", ".join([f"the {ds}" for ds in self.dataset[:-1]]) + f" and the {self.dataset[-1]} datasets."
                )

        if self.eval_results is not None:
            model_card += "\nIt achieves the following results on the evaluation set:\n"
            model_card += "\n".join([f"- {name}: {_maybe_round(value)}" for name, value in self.eval_results.items()])
        model_card += "\n"

        model_card += "\n## Model description\n\nMore information needed\n"
        model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
        model_card += "\n## Training and evaluation data\n\nMore information needed\n"

        model_card += "\n## Training procedure\n"
        model_card += "\n### Training hyperparameters\n"
        if self.hyperparameters is not None:
            model_card += "\nThe following hyperparameters were used during training:\n"
            model_card += "\n".join([f"- {name}: {value}" for name, value in self.hyperparameters.items()])
            model_card += "\n"
        else:
            model_card += "\nMore information needed\n"

        if self.eval_lines is not None:
            model_card += "\n### Training results\n\n"
            model_card += make_markdown_table(self.eval_lines)
            model_card += "\n"

        model_card += "\n### Framework versions\n\n"
        model_card += f"- Transformers {__version__}\n"
        if is_torch_available():
            import torch

            model_card += f"- Pytorch {torch.__version__}\n"
        if is_datasets_available():
            import datasets

            model_card += f"- Datasets {datasets.__version__}\n"
        if is_tokenizers_available():
            import tokenizers

            model_card += f"- Tokenizers {tokenizers.__version__}\n"

        return model_card

    @classmethod
    def from_trainer(
        cls,
        trainer,
        language=None,
        license=None,
        tags=None,
        model_name=None,
        finetuned_from=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
541
        tasks=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
544
545
        dataset_tags=None,
        dataset=None,
        dataset_args=None,
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        # Infer default from dataset
        one_dataset = trainer.train_dataset if trainer.train_dataset is not None else trainer.eval_dataset
        if is_hf_dataset(one_dataset) and (dataset_tags is None or dataset_args is None):
            default_tag = one_dataset.builder_name
            # Those are not real datasets from the Hub so we exclude them.
            if default_tag not in ["csv", "json", "pandas", "parquet", "text"]:
                if dataset_tags is None:
                    dataset_tags = [default_tag]
                if dataset_args is None:
                    dataset_args = [one_dataset.config_name]

        if dataset is None and dataset_tags is not None:
            dataset = dataset_tags

        # Infer default finetuned_from
        if (
            finetuned_from is None
            and hasattr(trainer.model.config, "_name_or_path")
            and not os.path.isdir(trainer.model.config._name_or_path)
        ):
            finetuned_from = trainer.model.config._name_or_path

        # Infer default task tag:
        if tasks is None:
            model_class_name = trainer.model.__class__.__name__
            for task, mapping in TASK_MAPPING.items():
                if model_class_name in _get_mapping_values(mapping):
                    tasks = task

Sylvain Gugger's avatar
Sylvain Gugger committed
575
576
577
        if model_name is None:
            model_name = Path(trainer.args.output_dir).name

578
579
580
581
582
583
584
585
        # Add `generated_from_trainer` to the tags
        if tags is None:
            tags = ["generated_from_trainer"]
        elif isinstance(tags, str) and tags != "generated_from_trainer":
            tags = [tags, "generated_from_trainer"]
        elif "generated_from_trainer" not in tags:
            tags.append("generated_from_trainer")

Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
588
589
590
591
592
593
594
        _, eval_lines, eval_results = parse_log_history(trainer.state.log_history)
        hyperparameters = extract_hyperparameters_from_trainer(trainer)

        return cls(
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
Sylvain Gugger's avatar
Sylvain Gugger committed
595
            tasks=tasks,
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
            eval_results=eval_results,
            eval_lines=eval_lines,
            hyperparameters=hyperparameters,
        )


def parse_log_history(log_history):
    """
    Parse the `log_history` of a Trainer to get the intermediate and final evaluation results.
    """
    idx = 0
    while idx < len(log_history) and "train_runtime" not in log_history[idx]:
        idx += 1

    # If there are no training logs
    if idx == len(log_history):
        idx -= 1
        while idx >= 0 and "eval_loss" not in log_history[idx]:
            idx -= 1

        if idx > 0:
            return None, None, log_history[idx]
        else:
            return None, None, None

    # From now one we can assume we have training logs:
    train_log = log_history[idx]
    lines = []
    training_loss = "No log"
    for i in range(idx):
        if "loss" in log_history[i]:
            training_loss = log_history[i]["loss"]
        if "eval_loss" in log_history[i]:
            metrics = log_history[i].copy()
            _ = metrics.pop("total_flos", None)
            epoch = metrics.pop("epoch", None)
            step = metrics.pop("step", None)
            _ = metrics.pop("eval_runtime", None)
            _ = metrics.pop("eval_samples_per_second", None)
638
            _ = metrics.pop("eval_steps_per_second", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
            values = {"Training Loss": training_loss, "Epoch": epoch, "Step": step}
            for k, v in metrics.items():
                if k == "eval_loss":
                    values["Validation Loss"] = v
                else:
                    splits = k.split("_")
                    name = " ".join([part.capitalize() for part in splits[1:]])
                    values[name] = v
            lines.append(values)

    idx = len(log_history) - 1
    while idx >= 0 and "eval_loss" not in log_history[idx]:
        idx -= 1

    if idx > 0:
        eval_results = {}
        for key, value in log_history[idx].items():
            if key.startswith("eval_"):
                key = key[5:]
658
            if key not in ["runtime", "samples_per_second", "steps_per_second", "epoch", "step"]:
Sylvain Gugger's avatar
Sylvain Gugger committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
                camel_cased_key = " ".join([part.capitalize() for part in key.split("_")])
                eval_results[camel_cased_key] = value
        return train_log, lines, eval_results
    else:
        return train_log, lines, None


def _maybe_round(v, decimals=4):
    if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals:
        return f"{v:.{decimals}f}"
    return str(v)


def _regular_table_line(values, col_widths):
    values_with_space = [f"| {v}" + " " * (w - len(v) + 1) for v, w in zip(values, col_widths)]
    return "".join(values_with_space) + "|\n"


def _second_table_line(col_widths):
    values = ["|:" + "-" * w + ":" for w in col_widths]
    return "".join(values) + "|\n"


def make_markdown_table(lines):
    """
    Create a nice Markdown table from the results in `lines`.
    """
    if lines is None or len(lines) == 0:
        return ""
    col_widths = {key: len(str(key)) for key in lines[0].keys()}
    for line in lines:
        for key, value in line.items():
            if col_widths[key] < len(_maybe_round(value)):
                col_widths[key] = len(_maybe_round(value))

    table = _regular_table_line(list(lines[0].keys()), list(col_widths.values()))
    table += _second_table_line(list(col_widths.values()))
    for line in lines:
        table += _regular_table_line([_maybe_round(v) for v in line.values()], list(col_widths.values()))
    return table


_TRAINING_ARGS_KEYS = [
    "learning_rate",
    "train_batch_size",
    "eval_batch_size",
    "seed",
]


def extract_hyperparameters_from_trainer(trainer):
    hyperparameters = {k: getattr(trainer.args, k) for k in _TRAINING_ARGS_KEYS}

    if trainer.args.parallel_mode not in [ParallelMode.NOT_PARALLEL, ParallelMode.NOT_DISTRIBUTED]:
        hyperparameters["distributed_type"] = (
            "multi-GPU" if trainer.args.parallel_mode == ParallelMode.DISTRIBUTED else trainer.args.parallel_mode.value
        )
    if trainer.args.world_size > 1:
        hyperparameters["num_devices"] = trainer.args.world_size
    if trainer.args.gradient_accumulation_steps > 1:
        hyperparameters["gradient_accumulation_steps"] = trainer.args.gradient_accumulation_steps

    total_train_batch_size = (
        trainer.args.train_batch_size * trainer.args.world_size * trainer.args.gradient_accumulation_steps
    )
    if total_train_batch_size != hyperparameters["train_batch_size"]:
        hyperparameters["total_train_batch_size"] = total_train_batch_size
    total_eval_batch_size = trainer.args.eval_batch_size * trainer.args.world_size
    if total_eval_batch_size != hyperparameters["eval_batch_size"]:
        hyperparameters["total_eval_batch_size"] = total_eval_batch_size

    if trainer.args.adafactor:
        hyperparameters["optimizer"] = "Adafactor"
    else:
        hyperparameters[
            "optimizer"
        ] = f"Adam with betas=({trainer.args.adam_beta1},{trainer.args.adam_beta2}) and epsilon={trainer.args.adam_epsilon}"

    hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value
    if trainer.args.warmup_ratio != 0.0:
        hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio
    if trainer.args.warmup_steps != 0.0:
        hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps
    if trainer.args.max_steps != -1:
        hyperparameters["training_steps"] = trainer.args.max_steps
    else:
        hyperparameters["num_epochs"] = trainer.args.num_train_epochs

    if trainer.args.fp16:
        if trainer.use_amp:
            hyperparameters["mixed_precision_training"] = "Native AMP"
Stas Bekman's avatar
Stas Bekman committed
750
        elif trainer.use_apex:
Sylvain Gugger's avatar
Sylvain Gugger committed
751
752
753
754
755
756
            hyperparameters["mixed_precision_training"] = f"Apex, opt level {trainer.args.fp16_opt_level}"

    if trainer.args.label_smoothing_factor != 0.0:
        hyperparameters["label_smoothing_factor"] = trainer.args.label_smoothing_factor

    return hyperparameters