modelcard.py 28.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Configuration base class and utilities."""


import copy
import json
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
23
24
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
thomwolf's avatar
thomwolf committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
import requests
from huggingface_hub import HfApi

from . import __version__
30
31
32
33
from .file_utils import (
    CONFIG_NAME,
    MODEL_CARD_NAME,
    TF2_WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
    WEIGHTS_NAME,
35
36
    cached_path,
    hf_bucket_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
    is_datasets_available,
    is_offline_mode,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
    is_tokenizers_available,
    is_torch_available,
42
)
Sylvain Gugger's avatar
Sylvain Gugger committed
43
from .training_args import ParallelMode
Lysandre Debut's avatar
Lysandre Debut committed
44
from .utils import logging
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
49
50
51
52
53
54
55
56
from .utils.modeling_auto_mapping import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
)

thomwolf's avatar
thomwolf committed
57

Sylvain Gugger's avatar
Sylvain Gugger committed
58
59
60
61
62
63
64
65
66
67
68
TASK_MAPPING = {
    "text-generation": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    "image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    "fill-mask": MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    "object-detection": MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
    "question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    "text2text-generation": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    "text-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    "table-question-answering": MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
    "token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
}
thomwolf's avatar
thomwolf committed
69

Lysandre Debut's avatar
Lysandre Debut committed
70
logger = logging.get_logger(__name__)
thomwolf's avatar
thomwolf committed
71
72


73
class ModelCard:
Sylvain Gugger's avatar
Sylvain Gugger committed
74
75
    r"""
    Structured Model Card class. Store model card as well as methods for loading/downloading/saving model cards.
thomwolf's avatar
thomwolf committed
76

Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
    Please read the following paper for details and explanation on the sections: "Model Cards for Model Reporting" by
    Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer,
    Inioluwa Deborah Raji and Timnit Gebru for the proposal behind model cards. Link: https://arxiv.org/abs/1810.03993
thomwolf's avatar
thomwolf committed
80

Sylvain Gugger's avatar
Sylvain Gugger committed
81
    Note: A model card can be loaded and saved to disk.
thomwolf's avatar
thomwolf committed
82

Lysandre's avatar
Lysandre committed
83
    Parameters:
thomwolf's avatar
thomwolf committed
84
    """
85

thomwolf's avatar
thomwolf committed
86
    def __init__(self, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
        warnings.warn(
            "The class `ModelCard` is deprecated and will be removed in version 5 of Transformers", FutureWarning
        )
90
        # Recommended attributes from https://arxiv.org/abs/1810.03993 (see papers)
91
92
93
94
95
96
97
98
99
        self.model_details = kwargs.pop("model_details", {})
        self.intended_use = kwargs.pop("intended_use", {})
        self.factors = kwargs.pop("factors", {})
        self.metrics = kwargs.pop("metrics", {})
        self.evaluation_data = kwargs.pop("evaluation_data", {})
        self.training_data = kwargs.pop("training_data", {})
        self.quantitative_analyses = kwargs.pop("quantitative_analyses", {})
        self.ethical_considerations = kwargs.pop("ethical_considerations", {})
        self.caveats_and_recommendations = kwargs.pop("caveats_and_recommendations", {})
thomwolf's avatar
thomwolf committed
100
101
102
103
104
105

        # Open additional attributes
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
106
                logger.error(f"Can't set {key} with value {value} for {self}")
thomwolf's avatar
thomwolf committed
107
108
                raise err

thomwolf's avatar
thomwolf committed
109
    def save_pretrained(self, save_directory_or_file):
Lysandre's avatar
Lysandre committed
110
        """Save a model card object to the directory or file `save_directory_or_file`."""
thomwolf's avatar
thomwolf committed
111
112
113
114
115
        if os.path.isdir(save_directory_or_file):
            # If we save using the predefined names, we can load using `from_pretrained`
            output_model_card_file = os.path.join(save_directory_or_file, MODEL_CARD_NAME)
        else:
            output_model_card_file = save_directory_or_file
thomwolf's avatar
thomwolf committed
116
117

        self.to_json_file(output_model_card_file)
118
        logger.info(f"Model card saved in {output_model_card_file}")
thomwolf's avatar
thomwolf committed
119
120
121

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
        r"""
        Instantiate a :class:`~transformers.ModelCard` from a pre-trained model model card.
thomwolf's avatar
thomwolf committed
124
125
126
127

        Parameters:
            pretrained_model_name_or_path: either:

128
129
130
                - a string, the `model id` of a pretrained model card hosted inside a model repo on huggingface.co.
                  Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a
                  user or organization name, like ``dbmdz/bert-base-german-cased``.
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
                - a path to a `directory` containing a model card file saved using the
                  :func:`~transformers.ModelCard.save_pretrained` method, e.g.: ``./my_model_directory/``.
133
                - a path or url to a saved model card JSON `file`, e.g.: ``./my_model_directory/modelcard.json``.
thomwolf's avatar
thomwolf committed
134
135

            cache_dir: (`optional`) string:
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
                Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache
                should not be used.
thomwolf's avatar
thomwolf committed
138
139
140

            kwargs: (`optional`) dict: key/value pairs with which to update the ModelCard object after loading.

Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
                - The values in kwargs of any keys which are model card attributes will be used to override the loaded
                  values.
                - Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the
                  `return_unused_kwargs` keyword parameter.
thomwolf's avatar
thomwolf committed
145
146

            proxies: (`optional`) dict, default None:
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.
thomwolf's avatar
thomwolf committed
149

150
            find_from_standard_name: (`optional`) boolean, default True:
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
                If the pretrained_model_name_or_path ends with our standard model or config filenames, replace them
                with our standard modelcard filename. Can be used to directly feed a model/config url and access the
                colocated modelcard.
154

thomwolf's avatar
thomwolf committed
155
156
157
            return_unused_kwargs: (`optional`) bool:

                - If False, then this function returns just the final model card object.
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
160
                - If True, then this functions returns a tuple `(model card, unused_kwargs)` where `unused_kwargs` is a
                  dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of
                  kwargs which has not been used to update `ModelCard` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
161
162
163

        Examples::

164
            modelcard = ModelCard.from_pretrained('bert-base-uncased')    # Download model card from huggingface.co and cache.
165
166
            modelcard = ModelCard.from_pretrained('./test/saved_model/')  # E.g. model card was saved using `save_pretrained('./test/saved_model/')`
            modelcard = ModelCard.from_pretrained('./test/saved_model/modelcard.json')
167
            modelcard = ModelCard.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
thomwolf's avatar
thomwolf committed
168
169

        """
170
171
172
        # This imports every model so let's do it dynamically here.
        from transformers.models.auto.configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP

173
174
175
176
        cache_dir = kwargs.pop("cache_dir", None)
        proxies = kwargs.pop("proxies", None)
        find_from_standard_name = kwargs.pop("find_from_standard_name", True)
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
177
178
179
180
181
        from_pipeline = kwargs.pop("_from_pipeline", None)

        user_agent = {"file_type": "model_card"}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
182

183
        if pretrained_model_name_or_path in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
184
185
            # For simplicity we use the same pretrained url than the configuration files
            # but with a different suffix (modelcard.json). This suffix is replaced below.
186
            model_card_file = ALL_PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
187
188
189
190
191
        elif os.path.isdir(pretrained_model_name_or_path):
            model_card_file = os.path.join(pretrained_model_name_or_path, MODEL_CARD_NAME)
        elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            model_card_file = pretrained_model_name_or_path
        else:
Julien Chaumond's avatar
Julien Chaumond committed
192
            model_card_file = hf_bucket_url(pretrained_model_name_or_path, filename=MODEL_CARD_NAME, mirror=None)
thomwolf's avatar
thomwolf committed
193

194
195
196
197
198
        if find_from_standard_name or pretrained_model_name_or_path in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
            model_card_file = model_card_file.replace(CONFIG_NAME, MODEL_CARD_NAME)
            model_card_file = model_card_file.replace(WEIGHTS_NAME, MODEL_CARD_NAME)
            model_card_file = model_card_file.replace(TF2_WEIGHTS_NAME, MODEL_CARD_NAME)

thomwolf's avatar
thomwolf committed
199
        try:
thomwolf's avatar
thomwolf committed
200
            # Load from URL or cache if already cached
201
202
203
            resolved_model_card_file = cached_path(
                model_card_file, cache_dir=cache_dir, proxies=proxies, user_agent=user_agent
            )
thomwolf's avatar
thomwolf committed
204
            if resolved_model_card_file == model_card_file:
205
                logger.info(f"loading model card file {model_card_file}")
thomwolf's avatar
thomwolf committed
206
            else:
207
                logger.info(f"loading model card file {model_card_file} from cache at {resolved_model_card_file}")
thomwolf's avatar
thomwolf committed
208
            # Load model card
209
            modelcard = cls.from_json_file(resolved_model_card_file)
thomwolf's avatar
thomwolf committed
210

211
        except (EnvironmentError, json.JSONDecodeError):
thomwolf's avatar
thomwolf committed
212
            # We fall back on creating an empty model card
213
            modelcard = cls()
thomwolf's avatar
thomwolf committed
214
215
216
217

        # Update model card with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
218
219
            if hasattr(modelcard, key):
                setattr(modelcard, key, value)
thomwolf's avatar
thomwolf committed
220
221
222
223
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

224
        logger.info(f"Model card: {modelcard}")
thomwolf's avatar
thomwolf committed
225
        if return_unused_kwargs:
226
            return modelcard, kwargs
thomwolf's avatar
thomwolf committed
227
        else:
228
            return modelcard
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
236
237

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `ModelCard` from a Python dictionary of parameters."""
        return cls(**json_object)

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `ModelCard` from a json file of parameters."""
238
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
            text = reader.read()
        dict_obj = json.loads(text)
        return cls(**dict_obj)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
Patrick von Platen's avatar
Patrick von Platen committed
259
        """Save this instance to a json file."""
260
        with open(json_file_path, "w", encoding="utf-8") as writer:
thomwolf's avatar
thomwolf committed
261
            writer.write(self.to_json_string())
Sylvain Gugger's avatar
Sylvain Gugger committed
262
263
264
265
266
267
268
269
270
271


AUTOGENERATED_COMMENT = """
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
"""


TASK_TAG_TO_NAME_MAPPING = {
    "fill-mask": "Masked Language Modeling",
Sylvain Gugger's avatar
Sylvain Gugger committed
272
    "image-classification": "Image Classification",
Sylvain Gugger's avatar
Sylvain Gugger committed
273
    "multiple-choice": "Multiple Choice",
Sylvain Gugger's avatar
Sylvain Gugger committed
274
    "object-detection": "Object Detection",
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
    "question-answering": "Question Answering",
    "summarization": "Summarization",
Sylvain Gugger's avatar
Sylvain Gugger committed
277
    "table-question-answering": "Table Question Answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    "text-classification": "Text Classification",
    "text-generation": "Causal Language Modeling",
    "text2text-generation": "Sequence-to-sequence Language Modeling",
    "token-classification": "Token Classification",
    "translation": "Translation",
    "zero-shot-classification": "Zero Shot Classification",
}


METRIC_TAGS = [
    "accuracy",
    "bleu",
    "f1",
    "matthews_correlation",
    "pearsonr",
    "precision",
    "recall",
    "rouge",
    "sacrebleu",
    "spearmanr",
]


def _listify(obj):
    if obj is None:
        return []
    elif isinstance(obj, str):
        return [obj]
    else:
        return obj


def _list_possibilities(name, tags):
    if tags is None:
        return ""
    if isinstance(tags, str):
        tags = [tags]
    if len(tags) == 0:
        return ""
    name_tags = [f"- {tag}" for tag in tags]
    return f"{name}:\n" + "\n".join(name_tags) + "\n"


def infer_metric_tags_from_eval_results(eval_results):
    if eval_results is None:
        return {}
    result = {}
    for key in eval_results.keys():
        if key.lower().replace(" ", "_") in METRIC_TAGS:
            result[key.lower().replace(" ", "_")] = key
        elif key.lower() == "rouge1":
            result["rouge"] = key
    return result


Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def is_hf_dataset(dataset):
    if not is_datasets_available():
        return False

    from datasets import Dataset

    return isinstance(dataset, Dataset)


def _get_mapping_values(mapping):
    result = []
    for v in mapping.values():
        if isinstance(v, (tuple, list)):
            result += list(v)
        else:
            result.append(v)
    return result


Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
355
356
357
358
@dataclass
class TrainingSummary:
    model_name: str
    language: Optional[Union[str, List[str]]] = None
    license: Optional[str] = None
    tags: Optional[Union[str, List[str]]] = None
    finetuned_from: Optional[str] = None
Sylvain Gugger's avatar
Sylvain Gugger committed
359
    tasks: Optional[Union[str, List[str]]] = None
Sylvain Gugger's avatar
Sylvain Gugger committed
360
361
362
363
364
365
366
367
368
    dataset: Optional[Union[str, List[str]]] = None
    dataset_tags: Optional[Union[str, List[str]]] = None
    dataset_args: Optional[Union[str, List[str]]] = None
    eval_results: Optional[Dict[str, float]] = None
    eval_lines: Optional[List[str]] = None
    hyperparameters: Optional[Dict[str, Any]] = None

    def __post_init__(self):
        # Infer default license from the checkpoint used, if possible.
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
372
373
374
        if (
            self.license is None
            and not is_offline_mode()
            and self.finetuned_from is not None
            and len(self.finetuned_from) > 0
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
            try:
                model_info = HfApi().model_info(self.finetuned_from)
                for tag in model_info.tags:
                    if tag.startswith("license:"):
                        self.license = tag[8:]
            except requests.exceptions.HTTPError:
                pass

    def create_model_index(self, metric_mapping):
        model_index = f"model-index:\n- name: {self.model_name}\n"

        # Dataset mapping tag -> name
        dataset_names = _listify(self.dataset)
        dataset_tags = _listify(self.dataset_tags)
        dataset_args = _listify(self.dataset_args)
        if len(dataset_args) < len(dataset_tags):
            dataset_args = dataset_args + [None] * (len(dataset_tags) - len(dataset_args))
        dataset_mapping = {tag: name for tag, name in zip(dataset_tags, dataset_names)}
        dataset_arg_mapping = {tag: arg for tag, arg in zip(dataset_tags, dataset_args)}

        task_mapping = {
Sylvain Gugger's avatar
Sylvain Gugger committed
396
            task: TASK_TAG_TO_NAME_MAPPING[task] for task in _listify(self.tasks) if task in TASK_TAG_TO_NAME_MAPPING
Sylvain Gugger's avatar
Sylvain Gugger committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        }

        if len(task_mapping) == 0 and len(dataset_mapping) == 0:
            return model_index
        if len(task_mapping) == 0:
            task_mapping = {None: None}
        if len(dataset_mapping) == 0:
            dataset_mapping = {None: None}
        all_possibilities = [(task_tag, ds_tag) for task_tag in task_mapping for ds_tag in dataset_mapping]

        model_index += "  results:\n"
        for task_tag, ds_tag in all_possibilities:
            result = ""
            if task_tag is not None:
                result += f"  - task:\n      name: {task_mapping[task_tag]}\n      type: {task_tag}\n"
            if ds_tag is not None:
                prefix = "  - " if task_tag is None else "    "
                result += f"{prefix}dataset:\n      name: {dataset_mapping[ds_tag]}\n      type: {ds_tag}\n"
                if dataset_arg_mapping[ds_tag] is not None:
                    result += f"      args: {dataset_arg_mapping[ds_tag]}\n"
            if len(metric_mapping) > 0:
                result += "    metrics:\n"
                for metric_tag, metric_name in metric_mapping.items():
                    value = self.eval_results[metric_name]
                    result += f"      - name: {metric_name}\n        type: {metric_tag}\n        value: {value}\n"

            model_index += result

        return model_index

    def to_model_card(self):
        model_card = ""

        metric_mapping = infer_metric_tags_from_eval_results(self.eval_results)

        # Metadata
        metadata = ""
        metadata += _list_possibilities("language", self.language)
        if self.license is not None:
            metadata += f"license: {self.license}\n"
        metadata += _list_possibilities("tags", self.tags)
        metadata += _list_possibilities("datasets", self.dataset_tags)
        metadata += _list_possibilities("metrics", list(metric_mapping.keys()))
        metadata += "\n" + self.create_model_index(metric_mapping)
        if len(metadata) > 0:
            model_card = f"---\n{metadata}---\n"

        # Now the model card for realsies.
        model_card += AUTOGENERATED_COMMENT

        model_card += f"\n# {self.model_name}\n\n"

        if self.finetuned_from is None:
            model_card += "This model was trained from scratch on "
        else:
            model_card += f"This model is a fine-tuned version of [{self.finetuned_from}](https://huggingface.co/{self.finetuned_from}) on "

        if self.dataset is None:
            model_card += "an unkown dataset."
        else:
            if isinstance(self.dataset, str):
                model_card += f"the {self.dataset} dataset."
Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
            elif isinstance(self.dataset, (tuple, list)) and len(self.dataset) == 1:
                model_card += f"the {self.dataset[0]} dataset."
Sylvain Gugger's avatar
Sylvain Gugger committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            else:
                model_card += (
                    ", ".join([f"the {ds}" for ds in self.dataset[:-1]]) + f" and the {self.dataset[-1]} datasets."
                )

        if self.eval_results is not None:
            model_card += "\nIt achieves the following results on the evaluation set:\n"
            model_card += "\n".join([f"- {name}: {_maybe_round(value)}" for name, value in self.eval_results.items()])
        model_card += "\n"

        model_card += "\n## Model description\n\nMore information needed\n"
        model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
        model_card += "\n## Training and evaluation data\n\nMore information needed\n"

        model_card += "\n## Training procedure\n"
        model_card += "\n### Training hyperparameters\n"
        if self.hyperparameters is not None:
            model_card += "\nThe following hyperparameters were used during training:\n"
            model_card += "\n".join([f"- {name}: {value}" for name, value in self.hyperparameters.items()])
            model_card += "\n"
        else:
            model_card += "\nMore information needed\n"

        if self.eval_lines is not None:
            model_card += "\n### Training results\n\n"
            model_card += make_markdown_table(self.eval_lines)
            model_card += "\n"

        model_card += "\n### Framework versions\n\n"
        model_card += f"- Transformers {__version__}\n"
        if is_torch_available():
            import torch

            model_card += f"- Pytorch {torch.__version__}\n"
        if is_datasets_available():
            import datasets

            model_card += f"- Datasets {datasets.__version__}\n"
        if is_tokenizers_available():
            import tokenizers

            model_card += f"- Tokenizers {tokenizers.__version__}\n"

        return model_card

    @classmethod
    def from_trainer(
        cls,
        trainer,
        language=None,
        license=None,
        tags=None,
        model_name=None,
        finetuned_from=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
515
        tasks=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
516
517
518
519
        dataset_tags=None,
        dataset=None,
        dataset_args=None,
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        # Infer default from dataset
        one_dataset = trainer.train_dataset if trainer.train_dataset is not None else trainer.eval_dataset
        if is_hf_dataset(one_dataset) and (dataset_tags is None or dataset_args is None):
            default_tag = one_dataset.builder_name
            # Those are not real datasets from the Hub so we exclude them.
            if default_tag not in ["csv", "json", "pandas", "parquet", "text"]:
                if dataset_tags is None:
                    dataset_tags = [default_tag]
                if dataset_args is None:
                    dataset_args = [one_dataset.config_name]

        if dataset is None and dataset_tags is not None:
            dataset = dataset_tags

        # Infer default finetuned_from
        if (
            finetuned_from is None
            and hasattr(trainer.model.config, "_name_or_path")
            and not os.path.isdir(trainer.model.config._name_or_path)
        ):
            finetuned_from = trainer.model.config._name_or_path

        # Infer default task tag:
        if tasks is None:
            model_class_name = trainer.model.__class__.__name__
            for task, mapping in TASK_MAPPING.items():
                if model_class_name in _get_mapping_values(mapping):
                    tasks = task

Sylvain Gugger's avatar
Sylvain Gugger committed
549
550
551
552
553
554
555
556
557
558
559
560
        if model_name is None:
            model_name = Path(trainer.args.output_dir).name

        _, eval_lines, eval_results = parse_log_history(trainer.state.log_history)
        hyperparameters = extract_hyperparameters_from_trainer(trainer)

        return cls(
            language=language,
            license=license,
            tags=tags,
            model_name=model_name,
            finetuned_from=finetuned_from,
Sylvain Gugger's avatar
Sylvain Gugger committed
561
            tasks=tasks,
Sylvain Gugger's avatar
Sylvain Gugger committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
            dataset_tags=dataset_tags,
            dataset=dataset,
            dataset_args=dataset_args,
            eval_results=eval_results,
            eval_lines=eval_lines,
            hyperparameters=hyperparameters,
        )


def parse_log_history(log_history):
    """
    Parse the `log_history` of a Trainer to get the intermediate and final evaluation results.
    """
    idx = 0
    while idx < len(log_history) and "train_runtime" not in log_history[idx]:
        idx += 1

    # If there are no training logs
    if idx == len(log_history):
        idx -= 1
        while idx >= 0 and "eval_loss" not in log_history[idx]:
            idx -= 1

        if idx > 0:
            return None, None, log_history[idx]
        else:
            return None, None, None

    # From now one we can assume we have training logs:
    train_log = log_history[idx]
    lines = []
    training_loss = "No log"
    for i in range(idx):
        if "loss" in log_history[i]:
            training_loss = log_history[i]["loss"]
        if "eval_loss" in log_history[i]:
            metrics = log_history[i].copy()
            _ = metrics.pop("total_flos", None)
            epoch = metrics.pop("epoch", None)
            step = metrics.pop("step", None)
            _ = metrics.pop("eval_runtime", None)
            _ = metrics.pop("eval_samples_per_second", None)
604
            _ = metrics.pop("eval_steps_per_second", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
            values = {"Training Loss": training_loss, "Epoch": epoch, "Step": step}
            for k, v in metrics.items():
                if k == "eval_loss":
                    values["Validation Loss"] = v
                else:
                    splits = k.split("_")
                    name = " ".join([part.capitalize() for part in splits[1:]])
                    values[name] = v
            lines.append(values)

    idx = len(log_history) - 1
    while idx >= 0 and "eval_loss" not in log_history[idx]:
        idx -= 1

    if idx > 0:
        eval_results = {}
        for key, value in log_history[idx].items():
            if key.startswith("eval_"):
                key = key[5:]
624
            if key not in ["runtime", "samples_per_second", "steps_per_second", "epoch", "step"]:
Sylvain Gugger's avatar
Sylvain Gugger committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
                camel_cased_key = " ".join([part.capitalize() for part in key.split("_")])
                eval_results[camel_cased_key] = value
        return train_log, lines, eval_results
    else:
        return train_log, lines, None


def _maybe_round(v, decimals=4):
    if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals:
        return f"{v:.{decimals}f}"
    return str(v)


def _regular_table_line(values, col_widths):
    values_with_space = [f"| {v}" + " " * (w - len(v) + 1) for v, w in zip(values, col_widths)]
    return "".join(values_with_space) + "|\n"


def _second_table_line(col_widths):
    values = ["|:" + "-" * w + ":" for w in col_widths]
    return "".join(values) + "|\n"


def make_markdown_table(lines):
    """
    Create a nice Markdown table from the results in `lines`.
    """
    if lines is None or len(lines) == 0:
        return ""
    col_widths = {key: len(str(key)) for key in lines[0].keys()}
    for line in lines:
        for key, value in line.items():
            if col_widths[key] < len(_maybe_round(value)):
                col_widths[key] = len(_maybe_round(value))

    table = _regular_table_line(list(lines[0].keys()), list(col_widths.values()))
    table += _second_table_line(list(col_widths.values()))
    for line in lines:
        table += _regular_table_line([_maybe_round(v) for v in line.values()], list(col_widths.values()))
    return table


_TRAINING_ARGS_KEYS = [
    "learning_rate",
    "train_batch_size",
    "eval_batch_size",
    "seed",
]


def extract_hyperparameters_from_trainer(trainer):
    hyperparameters = {k: getattr(trainer.args, k) for k in _TRAINING_ARGS_KEYS}

    if trainer.args.parallel_mode not in [ParallelMode.NOT_PARALLEL, ParallelMode.NOT_DISTRIBUTED]:
        hyperparameters["distributed_type"] = (
            "multi-GPU" if trainer.args.parallel_mode == ParallelMode.DISTRIBUTED else trainer.args.parallel_mode.value
        )
    if trainer.args.world_size > 1:
        hyperparameters["num_devices"] = trainer.args.world_size
    if trainer.args.gradient_accumulation_steps > 1:
        hyperparameters["gradient_accumulation_steps"] = trainer.args.gradient_accumulation_steps

    total_train_batch_size = (
        trainer.args.train_batch_size * trainer.args.world_size * trainer.args.gradient_accumulation_steps
    )
    if total_train_batch_size != hyperparameters["train_batch_size"]:
        hyperparameters["total_train_batch_size"] = total_train_batch_size
    total_eval_batch_size = trainer.args.eval_batch_size * trainer.args.world_size
    if total_eval_batch_size != hyperparameters["eval_batch_size"]:
        hyperparameters["total_eval_batch_size"] = total_eval_batch_size

    if trainer.args.adafactor:
        hyperparameters["optimizer"] = "Adafactor"
    else:
        hyperparameters[
            "optimizer"
        ] = f"Adam with betas=({trainer.args.adam_beta1},{trainer.args.adam_beta2}) and epsilon={trainer.args.adam_epsilon}"

    hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value
    if trainer.args.warmup_ratio != 0.0:
        hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio
    if trainer.args.warmup_steps != 0.0:
        hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps
    if trainer.args.max_steps != -1:
        hyperparameters["training_steps"] = trainer.args.max_steps
    else:
        hyperparameters["num_epochs"] = trainer.args.num_train_epochs

    if trainer.args.fp16:
        if trainer.use_amp:
            hyperparameters["mixed_precision_training"] = "Native AMP"
        elif trainer._use_apex:
            hyperparameters["mixed_precision_training"] = f"Apex, opt level {trainer.args.fp16_opt_level}"

    if trainer.args.label_smoothing_factor != 0.0:
        hyperparameters["label_smoothing_factor"] = trainer.args.label_smoothing_factor

    return hyperparameters