test_modeling_xlnet.py 28 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
import random
17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import XLNetConfig, is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
30
    import torch

31
    from transformers import (
32
        XLNetForMultipleChoice,
33
        XLNetForQuestionAnswering,
34
        XLNetForQuestionAnsweringSimple,
35
36
37
38
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetLMHeadModel,
        XLNetModel,
39
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.xlnet.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
59
        num_hidden_layers=2,
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
103
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
104
105
106

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
Lysandre's avatar
Lysandre committed
107
108
109
110
111
            self.batch_size,
            self.seq_length + 1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
112
113
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
Lysandre's avatar
Lysandre committed
114
115
116
117
118
119
120
        target_mapping = torch.zeros(
            self.batch_size,
            1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
        )
121
122
123
124
125
126
127
128
129
130
131
132
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        config = self.get_config()

        return (
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        )

    def get_config(self):
        return XLNetConfig(
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
168
        )
thomwolf's avatar
thomwolf committed
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
        result = model(input_ids_1, input_mask=input_mask)
        result = model(input_ids_1, attention_mask=input_mask)
        result = model(input_ids_1, token_type_ids=segment_ids)
        result = model(input_ids_1)
197
198
199
200
201

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
202
203
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
204

Stas Bekman's avatar
Stas Bekman committed
205
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
206
        self.parent.assertListEqual(
207
208
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
209
        )
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    def create_and_check_use_mems_train(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.train()

        train_size = input_ids_1.shape[0]

        batch_size = 4
        for i in range(train_size // batch_size + 1):
            input_ids = input_ids_1[i : (i + 1) * batch_size]
            labels = sequence_labels[i : (i + 1) * batch_size]
            outputs = model(input_ids=input_ids, labels=labels, return_dict=True)
            self.parent.assertIsNone(outputs.mems)
            self.parent.assertIsNotNone(outputs.loss)

    def create_and_check_xlnet_model_use_mems(
Teven's avatar
Teven committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
Lysandre's avatar
Lysandre committed
261
262
263
264
265
            input_ids_1.shape[0],
            input_ids_1.shape[1],
            input_ids_1.shape[1],
            dtype=torch.float,
            device=torch_device,
Teven's avatar
Teven committed
266
267
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
268
269
        outputs_cache = model(input_ids_1, use_mems=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_mems=False, perm_mask=causal_mask)
Teven's avatar
Teven committed
270
271
272
273
274
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
275
        output, mems = outputs_cache.to_tuple()
Teven's avatar
Teven committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
        output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"]
Teven's avatar
Teven committed
297
298
299
300
301
302
303
304
305

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
325
        attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"]
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
351
        result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
352

353
        result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems)
354

Sylvain Gugger's avatar
Sylvain Gugger committed
355
        _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
356

Stas Bekman's avatar
Stas Bekman committed
357
358
        self.parent.assertEqual(result1.loss.shape, ())
        self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
359
        self.parent.assertListEqual(
360
361
            [mem.shape for mem in result1.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
362
        )
363

Stas Bekman's avatar
Stas Bekman committed
364
365
        self.parent.assertEqual(result2.loss.shape, ())
        self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
366
        self.parent.assertListEqual(
367
368
            [mem.shape for mem in result2.mems],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
390
        result = model(input_ids_1)
391

Sylvain Gugger's avatar
Sylvain Gugger committed
392
        result_with_labels = model(
393
            input_ids_1,
394
395
396
397
398
399
400
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
401
        result_with_labels = model(
402
            input_ids_1,
403
404
405
406
407
408
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
409
        total_loss, mems = result_with_labels.to_tuple()
410

Lysandre's avatar
Lysandre committed
411
412
413
414
415
        result_with_labels = model(
            input_ids_1,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
416

Sylvain Gugger's avatar
Sylvain Gugger committed
417
        total_loss, mems = result_with_labels.to_tuple()
418

Stas Bekman's avatar
Stas Bekman committed
419
420
421
422
423
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
424
        )
Stas Bekman's avatar
Stas Bekman committed
425
426
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
427
        )
Stas Bekman's avatar
Stas Bekman committed
428
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
429
        self.parent.assertListEqual(
430
431
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
        result = model(input_ids_1)
        result = model(input_ids_1, labels=token_labels)
455

Stas Bekman's avatar
Stas Bekman committed
456
457
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size))
458
        self.parent.assertListEqual(
459
460
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
482
483
        result = model(input_ids_1)
        result = model(input_ids_1, labels=sequence_labels)
484

Stas Bekman's avatar
Stas Bekman committed
485
486
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
487
        self.parent.assertListEqual(
488
489
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
490
491
492
493
494
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
495
496
497
498
499
500
501
502
503
504
505
506
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
507
508
509
510
511
512
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
513
class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
514
515
516
517
518
519
520
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
521
            XLNetForQuestionAnsweringSimple,
522
523
524
525
526
527
528
529
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
530
531
532
533
534
535
536
537
538
539
540
541
    pipeline_model_mapping = (
        {
            "feature-extraction": XLNetModel,
            "question-answering": XLNetForQuestionAnsweringSimple,
            "text-classification": XLNetForSequenceClassification,
            "text-generation": XLNetLMHeadModel,
            "token-classification": XLNetForTokenClassification,
            "zero-shot": XLNetForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
542
    fx_compatible = False
543
    test_pruning = False
thomwolf's avatar
thomwolf committed
544

545
546
547
548
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
549
550
551
552
        if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
            return True

        return False
553

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    # XLNet has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLNetForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
569
    def setUp(self):
570
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
571
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
572

thomwolf's avatar
thomwolf committed
573
    def test_config(self):
thomwolf's avatar
thomwolf committed
574
575
576
577
578
579
580
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

581
    def test_xlnet_base_model_use_mems(self):
Stas Bekman's avatar
Stas Bekman committed
582
        # checking that in auto-regressive mode, `use_mems` gives the same results
Teven's avatar
Teven committed
583
584
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
585
586
587
588
589
        self.model_tester.create_and_check_xlnet_model_use_mems(*config_and_inputs)

    def test_seq_classification_use_mems_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_use_mems_train(*config_and_inputs)
Teven's avatar
Teven committed
590

591
592
593
594
595
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
596
597
598
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
599
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
600
601
602
603
604
605

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

606
607
608
609
610
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
611
612
613
614
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
615

616
617
618
619
    def test_retain_grad_hidden_states_attentions(self):
        # xlnet cannot keep gradients in attentions or hidden states
        return

620
621
622
623
624
625
626
627
628
629
630
631
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

        for param in ["q", "k", "v", "o", "r", "r_r_bias", "r_s_bias", "r_w_bias", "seg_embed", "mask_emb"]:
            if hasattr(module, param) and getattr(module, param) is not None:
                weight = getattr(module, param)
                weight.data.fill_(3)

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            # check hidden size
            for i, layer_hidden_states in enumerate(iter_hidden_states):
                # every 2nd tensor is from extra stream
                if i % 2 != 0:
                    seq_len = 1
                else:
                    # for first item dummy PAD token is appended so need one more
                    seq_len = (min_length + 1) if idx == 0 else min_length

                expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
                self.assertEqual(layer_hidden_states.shape, expected_shape)

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, attentions_item in enumerate(attentions):
            for iter_attentions in attentions_item:
                tgt_len = min_length

                # for first item dummy PAD token is appended so need one more
                if idx == 0:
                    tgt_len += 1

                src_len = min_length + idx + 1

                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    tgt_len,
                    src_len,
                )
                # check attn size
                self.assertListEqual(
                    [layer_attention.shape for layer_attention in iter_attentions],
                    [expected_shape] * len(iter_attentions),
                )

686
    @slow
thomwolf's avatar
thomwolf committed
687
    def test_model_from_pretrained(self):
688
        for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
689
            model = XLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
690
            self.assertIsNotNone(model)
691
692


693
@require_torch
694
695
696
697
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased")
698
        model.to(torch_device)
699
        # fmt: off
patrickvonplaten's avatar
patrickvonplaten committed
700
        input_ids = torch.tensor(
701
702
            [
                [
703
                    67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3,
704
                ]
patrickvonplaten's avatar
patrickvonplaten committed
705
706
707
708
            ],
            dtype=torch.long,
            device=torch_device,
        )
709
        # fmt: on
710
711
712
713
714
715
716
717
718
719
720
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

721
        # fmt: off
722
        expected_output_ids = [
723
            67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, 19, 12943, 4354, 153, 27, 442, 22, 2771, 4901, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771,
724
        ]
725
        # fmt: on
726
727
728
729
730
731
732
733
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
734
735
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
736

patrickvonplaten's avatar
patrickvonplaten committed
737
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
738
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)