test_modeling_flax_beit.py 11.1 KB
Newer Older
Kamal Raj's avatar
Kamal Raj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import unittest

import numpy as np

from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
22
from transformers.utils import cached_property, is_flax_available, is_vision_available
Kamal Raj's avatar
Kamal Raj committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
Kamal Raj's avatar
Kamal Raj committed
26
27
28
29


if is_flax_available():
    import jax
30

Kamal Raj's avatar
Kamal Raj committed
31
32
33
34
35
    from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel

if is_vision_available():
    from PIL import Image

36
    from transformers import BeitImageProcessor
Kamal Raj's avatar
Kamal Raj committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50


class FlaxBeitModelTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
51
        num_hidden_layers=2,
Kamal Raj's avatar
Kamal Raj committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
    ):
        self.parent = parent
        self.vocab_size = vocab_size
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range

NielsRogge's avatar
NielsRogge committed
79
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
80
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
81
        self.seq_length = num_patches + 1
82

Kamal Raj's avatar
Kamal Raj committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values, labels

    def create_and_check_model(self, config, pixel_values, labels):
        model = FlaxBeitModel(config=config)
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
111
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Kamal Raj's avatar
Kamal Raj committed
112
113
114
115

    def create_and_check_for_masked_lm(self, config, pixel_values, labels):
        model = FlaxBeitForMaskedImageModeling(config=config)
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
116
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
Kamal Raj's avatar
Kamal Raj committed
117
118
119
120
121
122
123

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = FlaxBeitForImageClassification(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
124
125
126
127
128
129
130
        # test greyscale images
        config.num_channels = 1
        model = FlaxBeitForImageClassification(config)

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)

Kamal Raj's avatar
Kamal Raj committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_flax
class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
    )

    def setUp(self) -> None:
        self.model_tester = FlaxBeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
155
    # We need to override this test because Beit's forward signature is different than text models.
Kamal Raj's avatar
Kamal Raj committed
156
157
158
159
160
161
162
163
164
165
166
167
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

168
    # We need to override this test because Beit expects pixel_values instead of input_ids
Kamal Raj's avatar
Kamal Raj committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(pixel_values, **kwargs):
                    return model(pixel_values=pixel_values, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224")
            outputs = model(np.ones((1, 3, 224, 224)))
            self.assertIsNotNone(outputs)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_vision
Patrick von Platen's avatar
Patrick von Platen committed
219
@require_flax
Kamal Raj's avatar
Kamal Raj committed
220
221
class FlaxBeitModelIntegrationTest(unittest.TestCase):
    @cached_property
222
223
    def default_image_processor(self):
        return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
Kamal Raj's avatar
Kamal Raj committed
224
225
226
227
228

    @slow
    def test_inference_masked_image_modeling_head(self):
        model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")

229
        image_processor = self.default_image_processor
Kamal Raj's avatar
Kamal Raj committed
230
        image = prepare_img()
231
        pixel_values = image_processor(images=image, return_tensors="np").pixel_values
Kamal Raj's avatar
Kamal Raj committed
232
233

        # prepare bool_masked_pos
234
        bool_masked_pos = np.ones((1, 196), dtype=bool)
Kamal Raj's avatar
Kamal Raj committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        # forward pass
        outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 196, 8192)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        )

        self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")

254
        image_processor = self.default_image_processor
Kamal Raj's avatar
Kamal Raj committed
255
        image = prepare_img()
256
        inputs = image_processor(images=image, return_tensors="np")
Kamal Raj's avatar
Kamal Raj committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

        # forward pass
        outputs = model(**inputs)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 1000)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array([-1.2385, -1.0987, -1.0108])

        self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k")

277
        image_processor = self.default_image_processor
Kamal Raj's avatar
Kamal Raj committed
278
        image = prepare_img()
279
        inputs = image_processor(images=image, return_tensors="np")
Kamal Raj's avatar
Kamal Raj committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

        # forward pass
        outputs = model(**inputs)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 21841)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array([1.6881, -0.2787, 0.5901])

        self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)