test_modeling_flax_beit.py 11.1 KB
Newer Older
Kamal Raj's avatar
Kamal Raj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import unittest

import numpy as np

from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
22
from transformers.utils import cached_property, is_flax_available, is_vision_available
Kamal Raj's avatar
Kamal Raj committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
Kamal Raj's avatar
Kamal Raj committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


if is_flax_available():
    import jax
    from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel

if is_vision_available():
    from PIL import Image

    from transformers import BeitFeatureExtractor


class FlaxBeitModelTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
    ):
        self.parent = parent
        self.vocab_size = vocab_size
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range

NielsRogge's avatar
NielsRogge committed
78
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
79
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
80
        self.seq_length = num_patches + 1
81

Kamal Raj's avatar
Kamal Raj committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

        return config, pixel_values, labels

    def create_and_check_model(self, config, pixel_values, labels):
        model = FlaxBeitModel(config=config)
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
110
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Kamal Raj's avatar
Kamal Raj committed
111
112
113
114

    def create_and_check_for_masked_lm(self, config, pixel_values, labels):
        model = FlaxBeitForMaskedImageModeling(config=config)
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
115
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
Kamal Raj's avatar
Kamal Raj committed
116
117
118
119
120
121
122

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = FlaxBeitForImageClassification(config=config)
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
123
124
125
126
127
128
129
        # test greyscale images
        config.num_channels = 1
        model = FlaxBeitForImageClassification(config)

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)

Kamal Raj's avatar
Kamal Raj committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_flax
class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
    )

    def setUp(self) -> None:
        self.model_tester = FlaxBeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
155
    # We need to override this test because Beit's forward signature is different than text models.
Kamal Raj's avatar
Kamal Raj committed
156
157
158
159
160
161
162
163
164
165
166
167
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

168
    # We need to override this test because Beit expects pixel_values instead of input_ids
Kamal Raj's avatar
Kamal Raj committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(pixel_values, **kwargs):
                    return model(pixel_values=pixel_values, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224")
            outputs = model(np.ones((1, 3, 224, 224)))
            self.assertIsNotNone(outputs)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_vision
Patrick von Platen's avatar
Patrick von Platen committed
219
@require_flax
Kamal Raj's avatar
Kamal Raj committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
class FlaxBeitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
        )

    @slow
    def test_inference_masked_image_modeling_head(self):
        model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values

        # prepare bool_masked_pos
236
        bool_masked_pos = np.ones((1, 196), dtype=bool)
Kamal Raj's avatar
Kamal Raj committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        # forward pass
        outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 196, 8192)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        )

        self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="np")

        # forward pass
        outputs = model(**inputs)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 1000)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array([-1.2385, -1.0987, -1.0108])

        self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k")

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="np")

        # forward pass
        outputs = model(**inputs)
        logits = outputs.logits

        # verify the logits
        expected_shape = (1, 21841)
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = np.array([1.6881, -0.2787, 0.5901])

        self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)