run_audio_classification.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
15
# limitations under the License.
16
17
18
19

import logging
import os
import sys
20
import warnings
21
22
23
24
25
from dataclasses import dataclass, field
from random import randint
from typing import Optional

import datasets
26
import evaluate
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from datasets import DatasetDict, load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
41
from transformers.utils import check_min_version, send_example_telemetry
42
43
44
45
46
47
from transformers.utils.versions import require_version


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
48
check_min_version("4.35.0.dev0")
49

50
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"})
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A file containing the training audio paths and labels."}
    )
    eval_file: Optional[str] = field(
        default=None, metadata={"help": "A file containing the validation audio paths and labels."}
    )
81
    train_split_name: str = field(
82
83
84
85
86
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
87
    eval_split_name: str = field(
88
89
        default="validation",
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
            "help": (
                "The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
            )
93
94
        },
    )
95
    audio_column_name: str = field(
96
97
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
98
    )
99
    label_column_name: str = field(
100
101
102
103
104
        default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
109
110
111
112
113
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
118
119
        },
    )
120
    max_length_seconds: float = field(
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        default=20,
        metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
    )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
146
147
148
149
150
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
151
    )
152
    attention_mask: bool = field(
153
154
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
155
156
    token: str = field(
        default=None,
157
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
160
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
161
            )
162
163
        },
    )
164
165
166
167
168
169
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
170
171
172
173
174
175
176
177
178
179
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will"
                "execute code present on the Hub on your local machine."
            )
        },
    )
180
181
182
    freeze_feature_extractor: Optional[bool] = field(
        default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
    )
183
184
185
186
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    def __post_init__(self):
        if not self.freeze_feature_extractor and self.freeze_feature_encoder:
            warnings.warn(
                "The argument `--freeze_feature_extractor` is deprecated and "
                "will be removed in a future version. Use `--freeze_feature_encoder`"
                "instead. Setting `freeze_feature_encoder==True`.",
                FutureWarning,
            )
        if self.freeze_feature_extractor and not self.freeze_feature_encoder:
            raise ValueError(
                "The argument `--freeze_feature_extractor` is deprecated and "
                "should not be used in combination with `--freeze_feature_encoder`."
                "Only make use of `--freeze_feature_encoder`."
            )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

217
218
219
220
221
222
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

223
224
225
226
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_audio_classification", model_args, data_args)

227
228
229
230
231
232
233
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

234
235
236
237
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

238
239
240
241
242
243
244
245
246
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
247
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
    raw_datasets["train"] = load_dataset(
272
273
274
        data_args.dataset_name,
        data_args.dataset_config_name,
        split=data_args.train_split_name,
275
        token=model_args.token,
276
277
    )
    raw_datasets["eval"] = load_dataset(
278
279
280
        data_args.dataset_name,
        data_args.dataset_config_name,
        split=data_args.eval_split_name,
281
        token=model_args.token,
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    )

    if data_args.audio_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}."
        )

    if data_args.label_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--label_column_name` to the correct text column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}."
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
305
        token=model_args.token,
306
        trust_remote_code=model_args.trust_remote_code,
307
308
    )

309
310
311
312
313
314
    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

315
316
    model_input_name = feature_extractor.model_input_names[0]

317
318
    def train_transforms(batch):
        """Apply train_transforms across a batch."""
319
        subsampled_wavs = []
320
        for audio in batch[data_args.audio_column_name]:
321
            wav = random_subsample(
322
                audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
323
            )
324
325
326
            subsampled_wavs.append(wav)
        inputs = feature_extractor(subsampled_wavs, sampling_rate=feature_extractor.sampling_rate)
        output_batch = {model_input_name: inputs.get(model_input_name)}
327
        output_batch["labels"] = list(batch[data_args.label_column_name])
328
329
330
331
332

        return output_batch

    def val_transforms(batch):
        """Apply val_transforms across a batch."""
333
334
335
        wavs = [audio["array"] for audio in batch[data_args.audio_column_name]]
        inputs = feature_extractor(wavs, sampling_rate=feature_extractor.sampling_rate)
        output_batch = {model_input_name: inputs.get(model_input_name)}
336
        output_batch["labels"] = list(batch[data_args.label_column_name])
337
338
339
340
341
342

        return output_batch

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = raw_datasets["train"].features[data_args.label_column_name].names
343
    label2id, id2label = {}, {}
344
345
346
347
348
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
349
    metric = evaluate.load("accuracy")
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
366
        token=model_args.token,
367
        trust_remote_code=model_args.trust_remote_code,
368
369
370
371
372
373
374
    )
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
375
        token=model_args.token,
376
        trust_remote_code=model_args.trust_remote_code,
377
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
378
379
380
    )

    # freeze the convolutional waveform encoder
381
382
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)

    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
        raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False)

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
        "dataset": data_args.dataset_name,
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()