modeling_test.py 13.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import os
20
import unittest
thomwolf's avatar
thomwolf committed
21
22
import json
import random
23
24
import shutil
import pytest
thomwolf's avatar
thomwolf committed
25

26
27
import torch

28
29
30
31
from pytorch_pretrained_bert import (BertConfig, BertModel, BertForMaskedLM,
                                     BertForNextSentencePrediction, BertForPreTraining,
                                     BertForQuestionAnswering, BertForSequenceClassification,
                                     BertForTokenClassification)
32
from pytorch_pretrained_bert.modeling import PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
33
34


35
class BertModelTest(unittest.TestCase):
36
37
38
39
40
41
42
43
44
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
45
                     use_labels=True,
46
47
48
49
50
51
52
53
54
55
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
56
                     type_sequence_label_size=2,
57
                     initializer_range=0.02,
58
                     num_labels=3,
59
60
61
62
63
64
65
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
66
            self.use_labels = use_labels
67
68
69
70
71
72
73
74
75
76
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
77
            self.type_sequence_label_size = type_sequence_label_size
78
            self.initializer_range = initializer_range
79
            self.num_labels = num_labels
80
81
            self.scope = scope

82
        def prepare_config_and_inputs(self):
83
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
84
85
86

            input_mask = None
            if self.use_input_mask:
87
                input_mask = BertModelTest.ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
88
89
90

            token_type_ids = None
            if self.use_token_type_ids:
91
                token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
92

93
94
95
96
97
98
            sequence_labels = None
            token_labels = None
            if self.use_labels:
                sequence_labels = BertModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.num_labels)

thomwolf's avatar
thomwolf committed
99
100
            config = BertConfig(
                vocab_size_or_config_json_file=self.vocab_size,
101
102
103
104
105
106
107
108
109
110
111
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

112
            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels
113

114
115
116
117
        def check_loss_output(self, result):
            self.parent.assertListEqual(
                list(result["loss"].size()),
                [])
118

119
120
        def create_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertModel(config=config)
thomwolf's avatar
thomwolf committed
121
            model.eval()
122
            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
123
            outputs = {
124
125
126
                "sequence_output": all_encoder_layers[-1],
                "pooled_output": pooled_output,
                "all_encoder_layers": all_encoder_layers,
127
128
129
            }
            return outputs

130
131
132
133
        def check_bert_model_output(self, result):
            self.parent.assertListEqual(
                [size for layer in result["all_encoder_layers"] for size in layer.size()],
                [self.batch_size, self.seq_length, self.hidden_size] * self.num_hidden_layers)
134
135
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
136
                [self.batch_size, self.seq_length, self.hidden_size])
137
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
138

139
140
141

        def create_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForMaskedLM(config=config)
thomwolf's avatar
thomwolf committed
142
            model.eval()
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            loss = model(input_ids, token_type_ids, input_mask, token_labels)
            prediction_scores = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            return outputs

        def check_bert_for_masked_lm_output(self, result):
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])

        def create_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForNextSentencePrediction(config=config)
thomwolf's avatar
thomwolf committed
158
            model.eval()
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
            seq_relationship_score = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "seq_relationship_score": seq_relationship_score,
            }
            return outputs

        def check_bert_for_next_sequence_prediction_output(self, result):
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])


        def create_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForPreTraining(config=config)
thomwolf's avatar
thomwolf committed
175
            model.eval()
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
            loss = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels)
            prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "prediction_scores": prediction_scores,
                "seq_relationship_score": seq_relationship_score,
            }
            return outputs

        def check_bert_for_pretraining_output(self, result):
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()),
                [self.batch_size, self.seq_length, self.vocab_size])
            self.parent.assertListEqual(
                list(result["seq_relationship_score"].size()),
                [self.batch_size, 2])


        def create_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForQuestionAnswering(config=config)
thomwolf's avatar
thomwolf committed
196
            model.eval()
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels)
            start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
            return outputs

        def check_bert_for_question_answering_output(self, result):
            self.parent.assertListEqual(
                list(result["start_logits"].size()),
                [self.batch_size, self.seq_length])
            self.parent.assertListEqual(
                list(result["end_logits"].size()),
                [self.batch_size, self.seq_length])


        def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForSequenceClassification(config=config, num_labels=self.num_labels)
thomwolf's avatar
thomwolf committed
217
            model.eval()
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
            loss = model(input_ids, token_type_ids, input_mask, sequence_labels)
            logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "logits": logits,
            }
            return outputs

        def check_bert_for_sequence_classification_output(self, result):
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.num_labels])


        def create_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels):
            model = BertForTokenClassification(config=config, num_labels=self.num_labels)
thomwolf's avatar
thomwolf committed
234
            model.eval()
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            loss = model(input_ids, token_type_ids, input_mask, token_labels)
            logits = model(input_ids, token_type_ids, input_mask)
            outputs = {
                "loss": loss,
                "logits": logits,
            }
            return outputs

        def check_bert_for_token_classification_output(self, result):
            self.parent.assertListEqual(
                list(result["logits"].size()),
                [self.batch_size, self.seq_length, self.num_labels])


249
250
251
252
    def test_default(self):
        self.run_tester(BertModelTest.BertModelTester(self))

    def test_config_to_json_string(self):
thomwolf's avatar
thomwolf committed
253
        config = BertConfig(vocab_size_or_config_json_file=99, hidden_size=37)
254
255
256
257
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37)

258
259
260
261
262
263
264
265
    def test_config_to_json_file(self):
        config_first = BertConfig(vocab_size_or_config_json_file=99, hidden_size=37)
        json_file_path = "/tmp/config.json"
        config_first.to_json_file(json_file_path)
        config_second = BertConfig.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.assertEqual(config_second.to_dict(), config_first.to_dict())

266
267
268
269
270
271
272
273
    @pytest.mark.slow
    def test_model_from_pretrained(self):
        cache_dir = "/tmp/pytorch_pretrained_bert_test/"
        for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)

274
    def run_tester(self, tester):
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        config_and_inputs = tester.prepare_config_and_inputs()
        output_result = tester.create_bert_model(*config_and_inputs)
        tester.check_bert_model_output(output_result)

        output_result = tester.create_bert_for_masked_lm(*config_and_inputs)
        tester.check_bert_for_masked_lm_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_next_sequence_prediction(*config_and_inputs)
        tester.check_bert_for_next_sequence_prediction_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_pretraining(*config_and_inputs)
        tester.check_bert_for_pretraining_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_question_answering(*config_and_inputs)
        tester.check_bert_for_question_answering_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_sequence_classification(*config_and_inputs)
        tester.check_bert_for_sequence_classification_output(output_result)
        tester.check_loss_output(output_result)

        output_result = tester.create_bert_for_token_classification(*config_and_inputs)
        tester.check_bert_for_token_classification_output(output_result)
        tester.check_loss_output(output_result)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

thomwolf's avatar
thomwolf committed
317
        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
318
319
320


if __name__ == "__main__":
321
    unittest.main()