modeling_test.py 9.56 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
20
import six
import unittest
thomwolf's avatar
thomwolf committed
21
22
23
24
25
import collections
import json
import random
import re

26
27
28
import torch

import modeling as modeling
thomwolf's avatar
thomwolf committed
29
30


31
class BertModelTest(unittest.TestCase):
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
                     initializer_range=0.02,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.scope = scope

        def create_model(self):
73
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
74
75
76

            input_mask = None
            if self.use_input_mask:
77
                input_mask = BertModelTest.ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
78
79
80

            token_type_ids = None
            if self.use_token_type_ids:
81
                token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
82
83
84
85
86
87
88
89
90
91
92
93
94
95

            config = modeling.BertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

96
97
98
            model = modeling.BertModel(config=config)

            all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
99
100

            outputs = {
101
102
103
                "sequence_output": all_encoder_layers[-1],
                "pooled_output": pooled_output,
                "all_encoder_layers": all_encoder_layers,
104
105
106
107
            }
            return outputs

        def check_output(self, result):
108
109
            self.parent.assertListEqual(
                list(result["sequence_output"].size()),
110
111
                [self.batch_size, self.seq_length, self.hidden_size])

112
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
113
114
115
116
117
118
119
120
121
122
123

    def test_default(self):
        self.run_tester(BertModelTest.BertModelTester(self))

    def test_config_to_json_string(self):
        config = modeling.BertConfig(vocab_size=99, hidden_size=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37)

    def run_tester(self, tester):
124
125
        output_result = tester.create_model()
        tester.check_output(output_result)
126

127
128
        # TODO Find PyTorch equivalent of assert_all_tensors_reachable() if necessary
        # self.assert_all_tensors_reachable(sess, [init_op, ops])
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

144
145
        # TODO Solve : the returned tensors provoke index out of range errors when passed to the model
        return torch.tensor(data=values, dtype=torch.int32)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

    def assert_all_tensors_reachable(self, sess, outputs):
        """Checks that all the tensors in the graph are reachable from outputs."""
        graph = sess.graph

        ignore_strings = [
            "^.*/dilation_rate$",
            "^.*/Tensordot/concat$",
            "^.*/Tensordot/concat/axis$",
            "^testing/.*$",
        ]

        ignore_regexes = [re.compile(x) for x in ignore_strings]

        unreachable = self.get_unreachable_ops(graph, outputs)
        filtered_unreachable = []
        for x in unreachable:
            do_ignore = False
            for r in ignore_regexes:
                m = r.match(x.name)
                if m is not None:
                    do_ignore = True
            if do_ignore:
                continue
            filtered_unreachable.append(x)
        unreachable = filtered_unreachable

        self.assertEqual(
            len(unreachable), 0, "The following ops are unreachable: %s" %
                                 (" ".join([x.name for x in unreachable])))

    @classmethod
    def get_unreachable_ops(cls, graph, outputs):
        """Finds all of the tensors in graph that are unreachable from outputs."""
        outputs = cls.flatten_recursive(outputs)
        output_to_op = collections.defaultdict(list)
        op_to_all = collections.defaultdict(list)
        assign_out_to_in = collections.defaultdict(list)

        for op in graph.get_operations():
            for x in op.inputs:
                op_to_all[op.name].append(x.name)
            for y in op.outputs:
                output_to_op[y.name].append(op.name)
                op_to_all[op.name].append(y.name)
            if str(op.type) == "Assign":
                for y in op.outputs:
                    for x in op.inputs:
                        assign_out_to_in[y.name].append(x.name)

        assign_groups = collections.defaultdict(list)
        for out_name in assign_out_to_in.keys():
            name_group = assign_out_to_in[out_name]
            for n1 in name_group:
                assign_groups[n1].append(out_name)
                for n2 in name_group:
                    if n1 != n2:
                        assign_groups[n1].append(n2)

        seen_tensors = {}
        stack = [x.name for x in outputs]
        while stack:
            name = stack.pop()
            if name in seen_tensors:
                continue
            seen_tensors[name] = True

            if name in output_to_op:
                for op_name in output_to_op[name]:
                    if op_name in op_to_all:
                        for input_name in op_to_all[op_name]:
                            if input_name not in stack:
                                stack.append(input_name)

            expanded_names = []
            if name in assign_groups:
                for assign_name in assign_groups[name]:
                    expanded_names.append(assign_name)

            for expanded_name in expanded_names:
                if expanded_name not in stack:
                    stack.append(expanded_name)

        unreachable_ops = []
        for op in graph.get_operations():
            is_unreachable = False
            all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
            for name in all_names:
                if name not in seen_tensors:
                    is_unreachable = True
            if is_unreachable:
                unreachable_ops.append(op)
        return unreachable_ops

    @classmethod
    def flatten_recursive(cls, item):
        """Flattens (potentially nested) a tuple/dictionary/list to a list."""
        output = []
        if isinstance(item, list):
            output.extend(item)
        elif isinstance(item, tuple):
            output.extend(list(item))
        elif isinstance(item, dict):
            for (_, v) in six.iteritems(item):
                output.append(v)
        else:
            return [item]

        flat_output = []
        for x in output:
            flat_output.extend(cls.flatten_recursive(x))
        return flat_output
thomwolf's avatar
thomwolf committed
258
259
260


if __name__ == "__main__":
261
    unittest.main()