modeling_utils.py 67.7 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

18
from __future__ import absolute_import, division, print_function, unicode_literals
19

20
21
import copy
import json
22
23
import logging
import os
thomwolf's avatar
thomwolf committed
24
from io import open
25

26
import six
27
28
import torch
from torch import nn
29
30
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
31

32
from .configuration_utils import PretrainedConfig
33
34
35
36
37
38
39
40
41
from .file_utils import (
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
    DUMMY_INPUTS,
    cached_path,
    hf_bucket_url,
    is_remote_url,
)
42
43
44

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """
52

thomwolf's avatar
thomwolf committed
53
54
55
56
57
58
        def __init__(self, *args, **kwargs):
            super(Identity, self).__init__()

        def forward(self, input):
            return input

59

60
class PreTrainedModel(nn.Module):
61
62
    r""" Base class for all models.

63
        :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
Julien Chaumond's avatar
Julien Chaumond committed
64
        as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
65
66

        Class attributes (overridden by derived classes):
67
            - ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
68
69
70
            - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
            - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:

71
72
                - ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`,
                - ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`,
73
74
75
                - ``path``: a path (string) to the TensorFlow checkpoint.

            - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
76
    """
77
    config_class = None
78
79
80
81
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""

82
83
84
85
86
87
88
    @property
    def dummy_inputs(self):
        """ Dummy inputs to do a forward pass in the network.

        Returns:
            torch.Tensor with dummy inputs
        """
89
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
90

91
92
93
94
95
96
97
98
    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
99
100
                )
            )
thomwolf's avatar
thomwolf committed
101
        # Save config in model
102
103
        self.config = config

104
105
106
    @property
    def base_model(self):
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
107

thomwolf's avatar
thomwolf committed
108
109
    def get_input_embeddings(self):
        """ Get model's input embeddings
thomwolf's avatar
thomwolf committed
110
        """
111
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
112
113
114
115
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
116

thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
    def set_input_embeddings(self, value):
        """ Set model's input embeddings
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
125

thomwolf's avatar
thomwolf committed
126
127
128
129
    def get_output_embeddings(self):
        """ Get model's output embeddings
            Return None if the model doesn't have output embeddings
        """
130
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
131

132
133
134
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
thomwolf's avatar
thomwolf committed
135
        """
thomwolf's avatar
thomwolf committed
136
137
138
        output_embeddings = self.get_output_embeddings()
        if output_embeddings is not None:
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
139

140
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
thomwolf's avatar
thomwolf committed
141
142
143
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
144
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
145
        else:
146
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
147

148
        if hasattr(output_embeddings, "bias") and output_embeddings.bias is not None:
149
150
151
            output_embeddings.bias.data = torch.nn.functional.pad(
                output_embeddings.bias.data,
                (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
152
153
                "constant",
                0,
154
            )
155
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
156
            output_embeddings.out_features = input_embeddings.num_embeddings
157

thomwolf's avatar
thomwolf committed
158
159
    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
160
        Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
161

162
163
164
        Arguments:

            new_num_tokens: (`optional`) int:
165
                New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end.
166
                If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
thomwolf's avatar
thomwolf committed
167

thomwolf's avatar
thomwolf committed
168
        Return: ``torch.nn.Embeddings``
169
            Pointer to the input tokens Embeddings Module of the model
thomwolf's avatar
thomwolf committed
170
171
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
172
173
174
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
175
176
177
178
179
180

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
181
        self.tie_weights()
thomwolf's avatar
thomwolf committed
182

thomwolf's avatar
thomwolf committed
183
184
        return model_embeds

185
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
186
187
188
189
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
        return self.get_input_embeddings()
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
        Return: ``torch.nn.Embeddings``
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

225
226
227
228
229
230
231
232
233
    def init_weights(self):
        """ Initialize and prunes weights if needed. """
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

234
235
236
        # Tie weights if needed
        self.tie_weights()

thomwolf's avatar
thomwolf committed
237
238
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
239
240
241
242

            Arguments:

                heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
243
                E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
244
        """
245
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
246
        for layer, heads in heads_to_prune.items():
247
248
249
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

250
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
251

252
    def save_pretrained(self, save_directory):
253
        """ Save a model and its configuration file to a directory, so that it
254
            can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
255
        """
256
257
258
        assert os.path.isdir(
            save_directory
        ), "Saving path should be a directory where the model and configuration can be saved"
259

Julien Chaumond's avatar
Julien Chaumond committed
260
        # Only save the model itself if we are using distributed training
261
        model_to_save = self.module if hasattr(self, "module") else self
262

thomwolf's avatar
thomwolf committed
263
264
265
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

266
267
268
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
thomwolf's avatar
thomwolf committed
269
        logger.info("Model weights saved in {}".format(output_model_file))
270

271
    @classmethod
272
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
273
274
        r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.

275
276
277
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with ``model.train()``

278
279
280
281
282
        The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
        It is up to you to train those weights with a downstream fine-tuning task.

        The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.

283
284
285
286
        Parameters:
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
287
                - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
288
                - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
289
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
thomwolf's avatar
thomwolf committed
290
                - None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
291
292
293
294

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

295
296
297
            config: (`optional`) one of:
                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`, or
                    - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()`
298
299
300
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
301
                - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
302
303
304
305
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
306
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
307
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
308
309

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
310
311
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
312

313
314
315
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

316
317
318
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

319
320
321
322
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

323
            output_loading_info: (`optional`) boolean:
thomwolf's avatar
thomwolf committed
324
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
325
326
327
328
329

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
330
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
331
332

        Examples::
thomwolf's avatar
thomwolf committed
333

thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
340
            model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
341

342
        """
343
344
345
346
347
348
349
350
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
thomwolf's avatar
thomwolf committed
351

352
353
354
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
355
            config, model_kwargs = cls.config_class.from_pretrained(
356
357
358
359
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
360
                force_download=force_download,
361
                resume_download=resume_download,
362
                proxies=proxies,
363
                **kwargs
364
365
366
            )
        else:
            model_kwargs = kwargs
367

thomwolf's avatar
thomwolf committed
368
        # Load model
thomwolf's avatar
thomwolf committed
369
        if pretrained_model_name_or_path is not None:
370
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
thomwolf's avatar
thomwolf committed
371
372
                archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
            elif os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
373
374
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
                    # Load from a TF 1.0 checkpoint
thomwolf's avatar
thomwolf committed
375
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
376
377
378
379
380
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
381
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
382
                else:
383
384
385
386
387
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} or `from_tf` set to False".format(
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path
                        )
                    )
388
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
389
                archive_file = pretrained_model_name_or_path
390
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
391
392
393
394
395
                assert (
                    from_tf
                ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
                    pretrained_model_name_or_path + ".index"
                )
396
                archive_file = pretrained_model_name_or_path + ".index"
397
            else:
398
                archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=WEIGHTS_NAME)
Julien Chaumond's avatar
Julien Chaumond committed
399
                if from_tf:
400
401
402
                    raise EnvironmentError(
                        "Loading a PyTorch model from a TF checkpoint is not supported when using a model identifier name."
                    )
403

thomwolf's avatar
thomwolf committed
404
405
            # redirect to the cache, if necessary
            try:
406
407
408
409
410
411
412
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                )
thomwolf's avatar
thomwolf committed
413
            except EnvironmentError:
thomwolf's avatar
thomwolf committed
414
                if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
415
                    msg = "Couldn't reach server at '{}' to download pretrained weights.".format(archive_file)
thomwolf's avatar
thomwolf committed
416
                else:
417
418
419
                    msg = (
                        "Model name '{}' was not found in model name list ({}). "
                        "We assumed '{}' was a path or url to model weight files named one of {} but "
thomwolf's avatar
thomwolf committed
420
                        "couldn't find any such file at this path or url.".format(
thomwolf's avatar
thomwolf committed
421
                            pretrained_model_name_or_path,
422
                            ", ".join(cls.pretrained_model_archive_map.keys()),
thomwolf's avatar
thomwolf committed
423
                            archive_file,
424
425
426
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME],
                        )
                    )
thomwolf's avatar
thomwolf committed
427
428
                raise EnvironmentError(msg)

thomwolf's avatar
thomwolf committed
429
430
            if resolved_archive_file == archive_file:
                logger.info("loading weights file {}".format(archive_file))
431
            else:
432
                logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
433
        else:
thomwolf's avatar
thomwolf committed
434
            resolved_archive_file = None
435
436

        # Instantiate model.
437
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
438

439
        if state_dict is None and not from_tf:
440
            try:
441
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
442
            except:
443
444
445
446
                raise OSError(
                    "Unable to load weights from pytorch checkpoint file. "
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )
447

448
449
450
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
451
452

        if from_tf:
453
            if resolved_archive_file.endswith(".index"):
454
455
456
457
458
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
459
                    from transformers import load_tf2_checkpoint_in_pytorch_model
460

461
462
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
                except ImportError as e:
463
464
465
466
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
467
468
469
470
471
472
473
                    raise e
        else:
            # Convert old format to new format if needed from a PyTorch state_dict
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                new_key = None
474
475
476
477
                if "gamma" in key:
                    new_key = key.replace("gamma", "weight")
                if "beta" in key:
                    new_key = key.replace("beta", "bias")
478
479
480
481
482
483
484
                if new_key:
                    old_keys.append(key)
                    new_keys.append(new_key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

            # copy state_dict so _load_from_state_dict can modify it
485
            metadata = getattr(state_dict, "_metadata", None)
486
487
488
489
            state_dict = state_dict.copy()
            if metadata is not None:
                state_dict._metadata = metadata

490
491
            # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
            # so we need to apply the function recursively.
492
            def load(module, prefix=""):
493
494
                local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
                module._load_from_state_dict(
495
496
                    state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
                )
497
498
                for name, child in module._modules.items():
                    if child is not None:
499
                        load(child, prefix + name + ".")
500
501

            # Make sure we are able to load base models as well as derived models (with heads)
502
            start_prefix = ""
503
            model_to_load = model
504
505
506
507
508
509
510
            if not hasattr(model, cls.base_model_prefix) and any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()
            ):
                start_prefix = cls.base_model_prefix + "."
            if hasattr(model, cls.base_model_prefix) and not any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()
            ):
511
512
513
514
                model_to_load = getattr(model, cls.base_model_prefix)

            load(model_to_load, prefix=start_prefix)
            if len(missing_keys) > 0:
515
516
517
518
519
                logger.info(
                    "Weights of {} not initialized from pretrained model: {}".format(
                        model.__class__.__name__, missing_keys
                    )
                )
520
            if len(unexpected_keys) > 0:
521
522
523
524
525
                logger.info(
                    "Weights from pretrained model not used in {}: {}".format(
                        model.__class__.__name__, unexpected_keys
                    )
                )
526
            if len(error_msgs) > 0:
527
528
529
530
531
                raise RuntimeError(
                    "Error(s) in loading state_dict for {}:\n\t{}".format(
                        model.__class__.__name__, "\n\t".join(error_msgs)
                    )
                )
532

533
        model.tie_weights()  # make sure word embedding weights are still tied if needed
534

535
536
537
        # Set model in evaluation mode to desactivate DropOut modules by default
        model.eval()

thomwolf's avatar
thomwolf committed
538
539
540
541
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

542
543
        return model

thomwolf's avatar
thomwolf committed
544
545
546
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {"input_ids": input_ids}

thomwolf's avatar
thomwolf committed
547
    @torch.no_grad()
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    def generate(
        self,
        input_ids=None,
        max_length=None,
        do_sample=None,
        num_beams=None,
        temperature=None,
        top_k=None,
        top_p=None,
        repetition_penalty=None,
        bos_token_id=None,
        pad_token_id=None,
        eos_token_ids=None,
        length_penalty=None,
        num_return_sequences=None,
    ):
thomwolf's avatar
thomwolf committed
564
565
566
567
        """ Sequence generator for models with a LM head.

        The method currently supports greedy or penalized greedy decoding, sampling with top-k or nucleus sampling
        and beam-search.
thomwolf's avatar
thomwolf committed
568

thomwolf's avatar
thomwolf committed
569
        Adapted in part from Facebook's XLM beam search code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
570
571
572
573
574

        Params:
            **input_ids**: (`optional`) `torch.LongTensor` of shape (1, sequence_length)
                The sequence used as a prompt for the generation. If `None` the method initializes
                it as an empty `torch.LongTensor` of shape (1,)
thomwolf's avatar
thomwolf committed
575
576
            **max_length**: (`optional`) int
                The max length of the sequence to be generated.  Between 1 and infinity. Default to 20.
thomwolf's avatar
thomwolf committed
577
            **do_sample**: (`optional`) bool
thomwolf's avatar
thomwolf committed
578
579
580
                If set to `False` we use greedy decoding; otherwise sampling. Default to greedy sampling.
            **num_beams**: (`optional`) int
                Number of beams for beam search. 1 means no beam serach. Default to 1.
thomwolf's avatar
thomwolf committed
581
582
            **temperature**: (`optional`) float
                The value used to module the next token probabilities.
thomwolf's avatar
thomwolf committed
583
584
585
586
            **top_k**: (`optional`) int
                The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
            **top_p**: (`optional`) float
                The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
thomwolf's avatar
thomwolf committed
587
            **repetition_penalty**: (`optional`) float
thomwolf's avatar
thomwolf committed
588
                The parameter for repetition penalty. Between 1.0 and + infinity. 1.0 means no penalty. Default to 1.
thomwolf's avatar
thomwolf committed
589
590
591
592
593
594
595
596
597
598
            **bos_token_id**: (`optional`) int
                Beginning of sentence token if no prompt is provided. Default to 0.
            **eos_token_ids**: (`optional`) int or list of int
                End of sequence token or list of tokens to stop the generation. Default to 0.
            **length_penalty**: (`optional`) int
                Exponential penalty to the length. Default to 0.
            **length_penalty**: (`optional`) float
                Exponential penalty to the length. Default to 1.
            **num_return_sequences**: (`optional`) int
                The number of independantly computed returned sequences for each element in the batch. Default to 1.
thomwolf's avatar
thomwolf committed
599
600
601
602
        """

        # We cannot generate if the model does not have a LM head
        if self.get_output_embeddings() is None:
603
604
605
606
            raise AttributeError(
                "You tried to generate sequences with a model that does not have a LM Head."
                "Please use another model class (e.g. `OpenAIGPTLMHeadModel`)"
            )
thomwolf's avatar
thomwolf committed
607

608
609
610
611
612
613
614
615
616
617
618
        max_length = max_length if max_length is not None else self.config.max_length
        do_sample = do_sample if do_sample is not None else self.config.do_sample
        num_beams = num_beams if num_beams is not None else self.config.num_beams
        temperature = temperature if temperature is not None else self.config.temperature
        top_k = top_k if top_k is not None else self.config.top_k
        top_p = top_p if top_p is not None else self.config.top_p
        repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_ids = eos_token_ids if eos_token_ids is not None else self.config.eos_token_ids
        length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
619
620
621
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
thomwolf's avatar
thomwolf committed
622
623
624

        if input_ids is not None:
            batch_size = input_ids.shape[0]  # overriden by the input batch_size
thomwolf's avatar
thomwolf committed
625
626
        else:
            batch_size = 1
thomwolf's avatar
thomwolf committed
627
628
629
        if isinstance(eos_token_ids, int):
            eos_token_ids = [eos_token_ids]

thomwolf's avatar
thomwolf committed
630
        assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictely positive integer."
thomwolf's avatar
thomwolf committed
631
        assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
thomwolf's avatar
thomwolf committed
632
        assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictely positive integer."
633
        # assert temperature >= 0, "`temperature` should be positive."
634
        assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
thomwolf's avatar
thomwolf committed
635
        assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
thomwolf's avatar
thomwolf committed
636
637
638
        assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
        assert isinstance(bos_token_id, int) and bos_token_id >= 0, "`bos_token_id` should be a positive integer."
        assert isinstance(pad_token_id, int) and pad_token_id >= 0, "`pad_token_id` should be a positive integer."
639
640
641
        assert isinstance(eos_token_ids, (list, tuple)) and (
            e >= 0 for e in eos_token_ids
        ), "`eos_token_ids` should be a positive integer or a list/tuple of positive integers."
thomwolf's avatar
thomwolf committed
642
        assert length_penalty > 0, "`length_penalty` should be strictely positive."
643
644
645
        assert (
            isinstance(num_return_sequences, int) and num_return_sequences > 0
        ), "`num_return_sequences` should be a strictely positive integer."
thomwolf's avatar
thomwolf committed
646
647

        if input_ids is None:
648
649
650
            input_ids = torch.full(
                (batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device
            )
thomwolf's avatar
thomwolf committed
651
        else:
652
            assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
thomwolf's avatar
thomwolf committed
653
654

        # current position and vocab size
thomwolf's avatar
thomwolf committed
655
        cur_len = input_ids.shape[1]
thomwolf's avatar
thomwolf committed
656
657
        vocab_size = self.config.vocab_size

thomwolf's avatar
thomwolf committed
658
659
660
        if num_return_sequences != 1:
            # Expand input to num return sequences
            input_ids = input_ids.unsqueeze(1).expand(batch_size, num_return_sequences, cur_len)
661
662
663
            input_ids = input_ids.contiguous().view(
                batch_size * num_return_sequences, cur_len
            )  # (batch_size * num_return_sequences, cur_len)
thomwolf's avatar
thomwolf committed
664
665
666
667
            effective_batch_size = batch_size * num_return_sequences
        else:
            effective_batch_size = batch_size

thomwolf's avatar
thomwolf committed
668
        if num_beams > 1:
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            output = self._generate_beam_search(
                input_ids,
                cur_len,
                max_length,
                do_sample,
                temperature,
                top_k,
                top_p,
                repetition_penalty,
                pad_token_id,
                eos_token_ids,
                effective_batch_size,
                length_penalty,
                num_beams,
                vocab_size,
            )
thomwolf's avatar
thomwolf committed
685
        else:
686
687
688
689
690
691
692
693
694
695
696
697
698
            output = self._generate_no_beam_search(
                input_ids,
                cur_len,
                max_length,
                do_sample,
                temperature,
                top_k,
                top_p,
                repetition_penalty,
                pad_token_id,
                eos_token_ids,
                effective_batch_size,
            )
thomwolf's avatar
thomwolf committed
699
700
701
702

        if num_return_sequences != 1:
            output = output.view(batch_size, num_return_sequences, -1)
        return output
thomwolf's avatar
thomwolf committed
703

704
705
706
707
708
709
710
711
712
713
714
715
716
717
    def _generate_no_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        pad_token_id,
        eos_token_ids,
        batch_size,
    ):
thomwolf's avatar
thomwolf committed
718
        """ Generate sequences for each example without beam search (num_beams == 1).
719
720
            All returned sequence are generated independantly.
        """
thomwolf's avatar
thomwolf committed
721
        # current position / max lengths / length of generated sentences / unfinished sentences
thomwolf's avatar
thomwolf committed
722
        unfinished_sents = input_ids.new(batch_size).fill_(1)
thomwolf's avatar
thomwolf committed
723

724
        # TODO: add cached compute states
thomwolf's avatar
thomwolf committed
725
726
727
        pasts = None

        while cur_len < max_length:
728
            model_inputs = self.prepare_inputs_for_generation(input_ids, pasts=pasts)
thomwolf's avatar
thomwolf committed
729
730
731
732
733
            outputs = self(**model_inputs)
            next_token_logits = outputs[0][:, -1, :]

            # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
thomwolf's avatar
thomwolf committed
734
                for i in range(batch_size):
735
736
                    for previous_tokens in set(input_ids[i].tolist()):
                        next_token_logits[i, previous_tokens] /= repetition_penalty
thomwolf's avatar
thomwolf committed
737
738
739

            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
740
                if temperature > 0 and temperature != 1.0:
thomwolf's avatar
thomwolf committed
741
742
743
744
                    next_token_logits = next_token_logits / temperature
                # Top-p/top-k filtering
                next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
                # Sample
745
                next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(1)
thomwolf's avatar
thomwolf committed
746
747
            else:
                # Greedy decoding
748
                next_token = torch.argmax(next_token_logits, dim=-1)
thomwolf's avatar
thomwolf committed
749
750
751

            # update generations and finished sentences
            tokens_to_add = next_token * unfinished_sents + pad_token_id * (1 - unfinished_sents)
752
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
thomwolf's avatar
thomwolf committed
753
            for eos_token_id in eos_token_ids:
754
                unfinished_sents.mul_(tokens_to_add.ne(eos_token_id).long())
thomwolf's avatar
thomwolf committed
755
756
757
758
759
760
761
762
            cur_len = cur_len + 1

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break

        # add eos_token_ids to unfinished sentences
        if cur_len == max_length:
763
764
            input_ids[:, -1].masked_fill_(unfinished_sents.to(dtype=torch.bool), eos_token_ids[0])

thomwolf's avatar
thomwolf committed
765
766
        return input_ids

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    def _generate_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        pad_token_id,
        eos_token_ids,
        batch_size,
        length_penalty,
        num_beams,
        vocab_size,
    ):
thomwolf's avatar
thomwolf committed
784
        """ Generate sequences for each example with beam search.
785
        """
thomwolf's avatar
thomwolf committed
786
787
        # Expand input to num beams
        input_ids = input_ids.unsqueeze(1).expand(batch_size, num_beams, cur_len)
788
        input_ids = input_ids.contiguous().view(batch_size * num_beams, cur_len)  # (batch_size * num_beams, cur_len)
thomwolf's avatar
thomwolf committed
789
790

        # generated hypotheses
791
792
793
        generated_hyps = [
            BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=False) for _ in range(batch_size)
        ]
thomwolf's avatar
thomwolf committed
794
795
796
797

        # scores for each sentence in the beam
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
798
        beam_scores = beam_scores.view(-1)  # shape (batch_size * num_beams,)
thomwolf's avatar
thomwolf committed
799
800
801
802
803
804
805
806

        # cache compute states
        pasts = None  # self.prepare_pasts()

        # done sentences
        done = [False for _ in range(batch_size)]

        while cur_len < max_length:
807
            model_inputs = self.prepare_inputs_for_generation(input_ids, pasts=pasts)
808
809
            scores = self(**model_inputs)[0]  # (batch_size * num_beams, cur_len, vocab_size)
            scores = scores[:, -1, :]  # (batch_size * num_beams, vocab_size)
thomwolf's avatar
thomwolf committed
810

811
812
813
814
815
            # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
                for i in range(batch_size * num_beams):
                    for previous_tokens in set(input_ids[i].tolist()):
                        scores[i, previous_tokens] /= repetition_penalty
thomwolf's avatar
thomwolf committed
816

817
818
            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
819
                if temperature > 0 and temperature != 1.0:
820
821
                    scores = scores / temperature
                # Top-p/top-k filtering
822
823
824
                scores = top_k_top_p_filtering(
                    scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2
                )  # (batch_size * num_beams, vocab_size)
825
                # Sample 2 next words for each beam (so we have some spare tokens and match output of greedy beam search)
826
                next_words = torch.multinomial(F.softmax(scores, dim=-1), num_samples=2)  # (batch_size * num_beams, 2)
827
                # Compute next scores
828
829
830
                _scores = F.log_softmax(scores, dim=-1)  # (batch_size * num_beams, vocab_size)
                _scores = torch.gather(_scores, -1, next_words)  # (batch_size * num_beams, 2)
                next_scores = _scores + beam_scores[:, None].expand_as(_scores)  # (batch_size * num_beams, 2)
831
                # Match shape of greedy beam search
832
833
                next_words = next_words.view(batch_size, 2 * num_beams)  # (batch_size, 2 * num_beams)
                next_scores = next_scores.view(batch_size, 2 * num_beams)  # (batch_size, 2 * num_beams)
834
835
            else:
                # do greedy beam search
836
                scores = F.log_softmax(scores, dim=-1)  # (batch_size * num_beams, vocab_size)
837
838
                assert scores.size() == (batch_size * num_beams, vocab_size)
                # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
839
                _scores = scores + beam_scores[:, None].expand_as(scores)  # (batch_size * num_beams, vocab_size)
840
                # re-organize to group the beam together (we are keeping top hypothesis accross beams)
841
842
                _scores = _scores.view(batch_size, num_beams * vocab_size)  # (batch_size, num_beams * vocab_size)
                next_scores, next_words = torch.topk(_scores, 2 * num_beams, dim=1, largest=True, sorted=True)
thomwolf's avatar
thomwolf committed
843
844
845
846
847
848
849
850

            assert next_scores.size() == next_words.size() == (batch_size, 2 * num_beams)

            # next batch beam content
            # list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch)
            next_batch_beam = []

            # for each sentence
thomwolf's avatar
thomwolf committed
851
            for batch_ex in range(batch_size):
thomwolf's avatar
thomwolf committed
852
853

                # if we are done with this sentence
thomwolf's avatar
thomwolf committed
854
855
                done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item())
                if done[batch_ex]:
thomwolf's avatar
thomwolf committed
856
857
858
859
860
861
862
                    next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams)  # pad the batch
                    continue

                # next sentence beam content
                next_sent_beam = []

                # next words for this sentence
thomwolf's avatar
thomwolf committed
863
                for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]):
thomwolf's avatar
thomwolf committed
864
865
866
867
868
869
870

                    # get beam and word IDs
                    beam_id = idx // vocab_size
                    word_id = idx % vocab_size

                    # end of sentence, or next word
                    if word_id.item() in eos_token_ids or cur_len + 1 == max_length:
871
872
873
                        generated_hyps[batch_ex].add(
                            input_ids[batch_ex * num_beams + beam_id, :cur_len].clone(), score.item()
                        )
thomwolf's avatar
thomwolf committed
874
                    else:
thomwolf's avatar
thomwolf committed
875
                        next_sent_beam.append((score, word_id, batch_ex * num_beams + beam_id))
thomwolf's avatar
thomwolf committed
876
877
878
879
880
881
882
883
884
885

                    # the beam for next step is full
                    if len(next_sent_beam) == num_beams:
                        break

                # update next beam content
                assert len(next_sent_beam) == 0 if cur_len + 1 == max_length else num_beams
                if len(next_sent_beam) == 0:
                    next_sent_beam = [(0, pad_token_id, 0)] * num_beams  # pad the batch
                next_batch_beam.extend(next_sent_beam)
thomwolf's avatar
thomwolf committed
886
                assert len(next_batch_beam) == num_beams * (batch_ex + 1)
thomwolf's avatar
thomwolf committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

            # sanity check / prepare next batch
            assert len(next_batch_beam) == batch_size * num_beams
            beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
            beam_words = input_ids.new([x[1] for x in next_batch_beam])
            beam_idx = input_ids.new([x[2] for x in next_batch_beam])

            # re-order batch and internal states
            input_ids = input_ids[beam_idx, :]
            input_ids = torch.cat([input_ids, beam_words.unsqueeze(1)], dim=-1)
            # TODO: Activate cache
            # for k in cache.keys():
            #     if k != 'slen':
            #         cache[k] = (cache[k][0][beam_idx], cache[k][1][beam_idx])

            # update current length
            cur_len = cur_len + 1

            # stop when we are done with each sentence
            if all(done):
                break

        # visualize hypotheses
        # print([len(x) for x in generated_hyps], cur_len)
        # globals().update( locals() );
        # !import code; code.interact(local=vars())
        # for ii in range(batch_size):
        #     for ss, ww in sorted(generated_hyps[ii].hyp, key=lambda x: x[0], reverse=True):
        #         print("%.3f " % ss + " ".join(self.dico[x] for x in ww.tolist()))
        #     print("")

        # select the best hypotheses
thomwolf's avatar
thomwolf committed
919
920
        tgt_len = input_ids.new(batch_size)
        best = []
thomwolf's avatar
thomwolf committed
921
922

        for i, hypotheses in enumerate(generated_hyps):
thomwolf's avatar
thomwolf committed
923
924
925
            best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1]
            tgt_len[i] = len(best_hyp) + 1  # +1 for the <EOS> symbol
            best.append(best_hyp)
thomwolf's avatar
thomwolf committed
926
927

        # generate target batch
thomwolf's avatar
thomwolf committed
928
929
        decoded = input_ids.new(batch_size, tgt_len.max().item()).fill_(pad_token_id)
        for i, hypo in enumerate(best):
930
            decoded[i, : tgt_len[i] - 1] = hypo
thomwolf's avatar
thomwolf committed
931
            decoded[i, tgt_len[i] - 1] = eos_token_ids[0]
thomwolf's avatar
thomwolf committed
932

thomwolf's avatar
thomwolf committed
933
934
935
        return decoded


936
def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
thomwolf's avatar
thomwolf committed
937
938
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
thomwolf's avatar
thomwolf committed
939
            logits: logits distribution shape (batch size, vocabulary size)
940
941
            if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
thomwolf's avatar
thomwolf committed
942
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
thomwolf's avatar
thomwolf committed
943
            Make sure we keep at least min_tokens_to_keep per batch example in the output
thomwolf's avatar
thomwolf committed
944
945
946
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if top_k > 0:
thomwolf's avatar
thomwolf committed
947
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
thomwolf's avatar
thomwolf committed
948
949
950
951
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

952
    if top_p < 1.0:
thomwolf's avatar
thomwolf committed
953
954
955
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

thomwolf's avatar
thomwolf committed
956
        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
thomwolf's avatar
thomwolf committed
957
        sorted_indices_to_remove = cumulative_probs > top_p
thomwolf's avatar
thomwolf committed
958
959
960
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
thomwolf's avatar
thomwolf committed
961
962
963
964
965
966
967
968
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
        logits[indices_to_remove] = filter_value
    return logits
thomwolf's avatar
thomwolf committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987


class BeamHypotheses(object):
    def __init__(self, n_hyp, max_length, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_length = max_length - 1  # ignoring bos_token
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.n_hyp = n_hyp
        self.hyp = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.hyp)
thomwolf's avatar
thomwolf committed
988

thomwolf's avatar
thomwolf committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.n_hyp or score > self.worst_score:
            self.hyp.append((score, hyp))
            if len(self) > self.n_hyp:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
                del self.hyp[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)
thomwolf's avatar
thomwolf committed
1002

thomwolf's avatar
thomwolf committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    def is_done(self, best_sum_logprobs):
        """
        If there are enough hypotheses and that none of the hypotheses being generated
        can become better than the worst one in the heap, then we are done with this sentence.
        """
        if len(self) < self.n_hyp:
            return False
        elif self.early_stopping:
            return True
        else:
            return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty
thomwolf's avatar
thomwolf committed
1014
1015


thomwolf's avatar
thomwolf committed
1016
1017
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
1018
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
1035
1036
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
1037

thomwolf's avatar
thomwolf committed
1038
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1039
1040
1041
1042
1043
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
1044
1045
1046
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
1047
        """
thomwolf's avatar
thomwolf committed
1048
1049
1050
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
1051
1052
1053
1054
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1055
1056
1057
1058
1059
1060
1061

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
1062

thomwolf's avatar
thomwolf committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
1072
1073
1074
1075
1076
1077
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
1078
                position of the first token for the labeled span:
1079
1080
1081
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
1082
        """
1083
1084
1085
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1086
        if start_positions is not None:
1087
            slen, hsz = hidden_states.shape[-2:]
1088
1089
1090
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1091
1092
1093
1094
1095
1096
1097

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
1098
1099
1100
1101
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1102
1103
1104
1105
1106
1107

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
1108

thomwolf's avatar
thomwolf committed
1109
1110
1111
1112
1113
1114
1115
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
1131
        """
1132
        hsz = hidden_states.shape[-1]
1133
1134
1135
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1136
        if start_positions is not None:
1137
1138
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1139
1140

        if cls_index is not None:
1141
1142
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1143
        else:
1144
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1145
1146
1147
1148
1149
1150
1151
1152
1153

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
1154
1155
1156
    r""" A SQuAD head inspired by XLNet.

    Parameters:
1157
        config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
1177
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1178
1179
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1180
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1181
1182
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1183
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1184
1185
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1186
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1187
1188
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1189
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1190
1191
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
1192
    """
1193

thomwolf's avatar
thomwolf committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

1203
1204
1205
    def forward(
        self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None
    ):
thomwolf's avatar
thomwolf committed
1206
1207
        outputs = ()

thomwolf's avatar
thomwolf committed
1208
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
1232
1233

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1234
1235
1236
1237

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
            start_log_probs = F.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1250
1251
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
1252
            end_log_probs = F.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
1253

1254
1255
1256
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
1266
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
1267
1268
1269
1270
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
1271
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
1272
1273
1274
1275
1276
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
thomwolf's avatar
thomwolf committed
1277
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
thomwolf's avatar
thomwolf committed
1278
1279
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
1280
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
1281
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
1282
1283
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
1284
    """
1285

thomwolf's avatar
thomwolf committed
1286
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1287
1288
        super(SequenceSummary, self).__init__()

1289
1290
        self.summary_type = config.summary_type if hasattr(config, "summary_type") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1291
1292
1293
1294
1295
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
1296
        self.summary = Identity()
1297
1298
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
1299
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
1300
1301
1302
1303
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

thomwolf's avatar
thomwolf committed
1304
        self.activation = Identity()
1305
        if hasattr(config, "summary_activation") and config.summary_activation == "tanh":
thomwolf's avatar
thomwolf committed
1306
1307
            self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
1308
        self.first_dropout = Identity()
1309
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
1310
1311
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
1312
        self.last_dropout = Identity()
1313
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
1314
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
1315

thomwolf's avatar
thomwolf committed
1316
    def forward(self, hidden_states, cls_index=None):
1317
        """ hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer.
thomwolf's avatar
thomwolf committed
1318
            cls_index: [optional] position of the classification token if summary_type == 'cls_index',
thomwolf's avatar
thomwolf committed
1319
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
thomwolf's avatar
thomwolf committed
1320
                if summary_type == 'cls_index' and cls_index is None:
thomwolf's avatar
thomwolf committed
1321
1322
                    we take the last token of the sequence as classification token
        """
1323
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1324
            output = hidden_states[:, -1]
1325
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1326
            output = hidden_states[:, 0]
1327
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
1328
            output = hidden_states.mean(dim=1)
1329
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
1330
            if cls_index is None:
1331
                cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long)
thomwolf's avatar
thomwolf committed
1332
            else:
thomwolf's avatar
thomwolf committed
1333
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
1334
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1335
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1336
1337
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1338
1339
            raise NotImplementedError

1340
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
1341
1342
        output = self.summary(output)
        output = self.activation(output)
1343
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
1344
1345
1346
1347

        return output


1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))