modeling_bert_generation.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model specific for generation. """


import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from .configuration_bert_generation import BertGenerationConfig
from .file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
27
    add_start_docstrings_to_model_forward,
28
29
30
    replace_return_docstrings,
)
from .modeling_bert import BertEncoder
31
from .modeling_outputs import BaseModelOutputWithCrossAttentions, CausalLMOutputWithCrossAttentions
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from .modeling_utils import PreTrainedModel
from .utils import logging


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "BertGenerationConfig"
_TOKENIZER_FOR_DOC = "BertGenerationTokenizer"


def load_tf_weights_in_bert_generation(
    model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
):
    try:
        import numpy as np
        import tensorflow.compat.v1 as tf

        import tensorflow_hub as hub
        import tensorflow_text  # noqa: F401

        tf.disable_eager_execution()
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_model = hub.Module(tf_hub_path)
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        init.run()
        all_variables = tf_model.variable_map
        keep_track_variables = all_variables.copy()
        for key in list(all_variables.keys()):
            if "global" in key:
                logger.info(f"Skipping {key}...")
                continue
            if not is_encoder:
                model_pointer = getattr(model, model_class)
            else:
                model_pointer = model
            is_embedding = False
            logger.info(f"Trying to match {key}...")
            # remove start_string = "module/bert/"
            sub_layers = key.split("/")[2:]
            if is_encoder_named_decoder and sub_layers[0] == "encoder":
                logger.info(f"Skipping encoder layer {key} for decoder")
                continue
            if is_encoder and sub_layers[0] == "decoder":
                logger.info(f"Skipping decoder layer {key} for encoder")
                continue
            for i, sub_layer in enumerate(sub_layers):
                if sub_layer == "embeddings":
                    is_embedding = True
                elif sub_layer == "LayerNorm":
                    is_embedding = False
                if "layer" in sub_layer:
                    model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
                elif sub_layer in ["kernel", "gamma"]:
                    model_pointer = model_pointer.weight
                elif sub_layer == "beta":
                    model_pointer = model_pointer.bias
                elif sub_layer == "encdec":
                    model_pointer = model_pointer.crossattention.self
                elif sub_layer == "encdec_output":
                    model_pointer = model_pointer.crossattention.output
                elif is_encoder_named_decoder and sub_layer == "decoder":
                    model_pointer = model_pointer.encoder
                else:
                    if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
                        continue
                    try:
                        model_pointer = getattr(model_pointer, sub_layer)
                    except AttributeError:
                        logger.info(f"Skipping to initialize {key} at {sub_layer}...")
                        raise AttributeError

            array = np.asarray(sess.run(all_variables[key]))
            if not is_embedding:
                logger.info("Transposing numpy weight of shape {} for {}".format(array.shape, key))
                array = np.transpose(array)
            else:
                model_pointer = model_pointer.weight

            try:
                assert (
                    model_pointer.shape == array.shape
                ), f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched"
            except AssertionError as e:
                e.args += (model_pointer.shape, array.shape)
                raise
            logger.info(f"Initialize PyTorch weight {key}")

            model_pointer.data = torch.from_numpy(array.astype(np.float32))
            keep_track_variables.pop(key, None)

        logger.info("Weights not copied to PyTorch model: {}".format(", ".join(keep_track_variables.keys())))
        return model


class BertGenerationEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    def forward(self, input_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = inputs_embeds + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertGenerationPreTrainedModel(PreTrainedModel):
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    """

    config_class = BertGenerationConfig
    base_model_prefix = "bert"
    authorized_missing_keys = [r"position_ids"]

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


BERT_GENERATION_START_DOCSTRING = r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
196

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

Sylvain Gugger's avatar
Sylvain Gugger committed
197
198
199
    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.
200
201
202

    Parameters:
        config (:class:`~transformers.BertGenerationConfig`): Model configuration class with all the parameters of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
205
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
206
207
208
209
"""

BERT_GENERATION_INPUTS_DOCSTRING = r"""
    Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
210
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
211
212
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
            Indices can be obtained using :class:`~transformers.BertGenerationTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.__call__` and :meth:`transformers.PreTrainedTokenizer.encode` for
            details.
216
217

            `What are input IDs? <../glossary.html#input-ids>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
219
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221

            - 1 for tokens that are **not masked**,
222
            - 0 for tokens that are **masked**.
223
224

            `What are attention masks? <../glossary.html#attention-mask>`__
Sylvain Gugger's avatar
Sylvain Gugger committed
225
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
228
229
230

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
231
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
234
235
236

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
237
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
240
        output_attentions (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
243
        output_hidden_states (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
246
        return_dict (:obj:`bool`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
247
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
248
249
250
251
"""


@add_start_docstrings(
Patrick von Platen's avatar
Patrick von Platen committed
252
    "The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
253
254
255
256
257
    BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationEncoder(BertGenerationPreTrainedModel):
    """

Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
260
261
    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in `Attention is
    all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
262

Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
    This model should be used when leveraging Bert or Roberta checkpoints for the
    :class:`~transformers.EncoderDecoderModel` class as described in `Leveraging Pre-trained Checkpoints for Sequence
    Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
266

Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
269
270
    To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
    set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
    argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
    input to the forward pass.
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    """

    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embeddings = BertGenerationEmbeddings(config)
        self.encoder = BertEncoder(config)

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
292
293
294
295
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

296
    @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
297
298
299
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="google/bert_for_seq_generation_L-24_bbc_encoder",
300
        output_type=BaseModelOutputWithCrossAttentions,
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
318
319
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
320
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: ``1`` for
            tokens that are NOT MASKED, ``0`` for MASKED tokens.
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        if not return_dict:
            return (sequence_output,) + encoder_outputs[1:]

384
        return BaseModelOutputWithCrossAttentions(
385
386
387
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
388
            cross_attentions=encoder_outputs.cross_attentions,
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        )


class BertGenerationOnlyLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        logits = self.decoder(hidden_states)
        return logits


@add_start_docstrings(
    """BertGeneration Model with a `language modeling` head on top for CLM fine-tuning. """,
    BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationDecoder(BertGenerationPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        if not config.is_decoder:
            logger.warn("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")

        self.bert = BertGenerationEncoder(config)
        self.lm_head = BertGenerationOnlyLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

425
    @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
426
    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
442
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
443
444
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
445
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
446
447
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449

            - 1 for tokens that are **not masked**,
450
            - 0 for tokens that are **masked**.
Sylvain Gugger's avatar
Sylvain Gugger committed
451
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
454
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
            ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

        Returns:

        Example::

            >>> from transformers import BertGenerationTokenizer, BertGenerationDecoder, BertGenerationConfig
            >>> import torch

            >>> tokenizer = BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder')
            >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
            >>> config.is_decoder = True
            >>> model = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder', config=config, return_dict=True)

            >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
            >>> outputs = model(**inputs)

            >>> prediction_logits = outputs.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

503
        return CausalLMOutputWithCrossAttentions(
504
505
506
507
            loss=lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
508
            cross_attentions=outputs.cross_attentions,
509
510
511
512
513
514
515
516
517
518
        )

    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        return {"input_ids": input_ids, "attention_mask": attention_mask}