xlm-roberta.mdx 11.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# XLM-RoBERTa

Steven Liu's avatar
Steven Liu committed
15
16
17
18
19
20
21
22
23
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=xlm-roberta">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-xlm--roberta-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/xlm-roberta-base">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>

Sylvain Gugger's avatar
Sylvain Gugger committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
## Overview

The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzm谩n, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's
RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl
data.

The abstract from the paper is the following:

*This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a
wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred
languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly
outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy on
XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on
low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model. We
also present a detailed empirical evaluation of the key factors that are required to achieve these gains, including the
trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource
languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing
per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We
will make XLM-R code, data, and models publicly available.*

Tips:

- XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM multilingual models, it does
  not require `lang` tensors to understand which language is used, and should be able to determine the correct
  language from the input ids.
Steven Liu's avatar
Steven Liu committed
50
- Uses RoBERTa tricks on the XLM approach, but does not use the translation language modeling objective. It only uses masked language modeling on sentences coming from one language.
Sylvain Gugger's avatar
Sylvain Gugger committed
51
52
53
54
55
- This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples
  as well as the information relative to the inputs and outputs.

This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).

Hazrul Akmal's avatar
Hazrul Akmal committed
56
57
58
59
60
61
62
63
64
65
66
## Resources

A list of official Hugging Face and community (indicated by 馃寧) resources to help you get started with XLM-RoBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

<PipelineTag pipeline="text-classification"/>

- A blog post on how to [finetune XLM RoBERTa for multiclass classification with Habana Gaudi on AWS](https://www.philschmid.de/habana-distributed-training)
- [`XLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFXLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [`FlaxXLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- [Text classification](https://huggingface.co/docs/transformers/tasks/sequence_classification) chapter of the 馃 Hugging Face Task Guides.
67
- [Text classification task guide](./tasks/sequence_classification)
Hazrul Akmal's avatar
Hazrul Akmal committed
68
69
70
71
72
73
74

<PipelineTag pipeline="token-classification"/>

- [`XLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFXLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxXLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 馃 Hugging Face Course.
75
- [Token classification task guide](./tasks/token_classification)
Hazrul Akmal's avatar
Hazrul Akmal committed
76
77
78
79

<PipelineTag pipeline="text-generation"/>

- [`XLMRobertaForCausalLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
80
81
- [Causal language modeling](https://huggingface.co/docs/transformers/tasks/language_modeling) chapter of the 馃 Hugging Face Task Guides.
- [Causal language modeling task guide](./tasks/language_modeling)
Hazrul Akmal's avatar
Hazrul Akmal committed
82
83
84
85
86
87
88

<PipelineTag pipeline="fill-mask"/>

- [`XLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFXLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxXLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 馃 Hugging Face Course.
89
- [Masked language modeling](./tasks/masked_language_modeling)
Hazrul Akmal's avatar
Hazrul Akmal committed
90
91
92
93
94
95
96

<PipelineTag pipeline="question-answering"/>

- [`XLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFXLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [`FlaxXLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 馃 Hugging Face Course.
97
- [Question answering task guide](./tasks/question_answering)
Hazrul Akmal's avatar
Hazrul Akmal committed
98
99
100
101
102

**Multiple choice**

- [`XLMRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFXLMRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
103
- [Multiple choice task guide](./tasks/multiple_choice)
Hazrul Akmal's avatar
Hazrul Akmal committed
104
105
106

馃殌 Deploy

107
- A blog post on how to [Deploy Serverless XLM RoBERTa on AWS Lambda](https://www.philschmid.de/multilingual-serverless-xlm-roberta-with-huggingface).
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

## XLMRobertaConfig

[[autodoc]] XLMRobertaConfig

## XLMRobertaTokenizer

[[autodoc]] XLMRobertaTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## XLMRobertaTokenizerFast

[[autodoc]] XLMRobertaTokenizerFast

## XLMRobertaModel

[[autodoc]] XLMRobertaModel
    - forward

## XLMRobertaForCausalLM

[[autodoc]] XLMRobertaForCausalLM
    - forward

## XLMRobertaForMaskedLM

[[autodoc]] XLMRobertaForMaskedLM
    - forward

## XLMRobertaForSequenceClassification

[[autodoc]] XLMRobertaForSequenceClassification
    - forward

## XLMRobertaForMultipleChoice

[[autodoc]] XLMRobertaForMultipleChoice
    - forward

## XLMRobertaForTokenClassification

[[autodoc]] XLMRobertaForTokenClassification
    - forward

## XLMRobertaForQuestionAnswering

[[autodoc]] XLMRobertaForQuestionAnswering
    - forward

## TFXLMRobertaModel

[[autodoc]] TFXLMRobertaModel
    - call

165
166
167
168
169
## TFXLMRobertaForCausalLM

[[autodoc]] TFXLMRobertaForCausalLM
    - call

Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## TFXLMRobertaForMaskedLM

[[autodoc]] TFXLMRobertaForMaskedLM
    - call

## TFXLMRobertaForSequenceClassification

[[autodoc]] TFXLMRobertaForSequenceClassification
    - call

## TFXLMRobertaForMultipleChoice

[[autodoc]] TFXLMRobertaForMultipleChoice
    - call

## TFXLMRobertaForTokenClassification

[[autodoc]] TFXLMRobertaForTokenClassification
    - call

## TFXLMRobertaForQuestionAnswering

[[autodoc]] TFXLMRobertaForQuestionAnswering
    - call
194
195
196
197
198
199

## FlaxXLMRobertaModel

[[autodoc]] FlaxXLMRobertaModel
    - __call__

200
201
202
203
204
## FlaxXLMRobertaForCausalLM

[[autodoc]] FlaxXLMRobertaForCausalLM
    - __call__

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
## FlaxXLMRobertaForMaskedLM

[[autodoc]] FlaxXLMRobertaForMaskedLM
    - __call__

## FlaxXLMRobertaForSequenceClassification

[[autodoc]] FlaxXLMRobertaForSequenceClassification
    - __call__

## FlaxXLMRobertaForMultipleChoice

[[autodoc]] FlaxXLMRobertaForMultipleChoice
    - __call__

## FlaxXLMRobertaForTokenClassification

[[autodoc]] FlaxXLMRobertaForTokenClassification
    - __call__

## FlaxXLMRobertaForQuestionAnswering

[[autodoc]] FlaxXLMRobertaForQuestionAnswering
    - __call__