"...lm-evaluation-harness.git" did not exist on "be7be189219993f6c5b574d7313d0ff65a458e18"
modeling_auto.py 26.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging

thomwolf's avatar
thomwolf committed
21
22
23
24
25
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter

thomwolf's avatar
thomwolf committed
26
27
28
29
30
31
32
from .modeling_bert import BertConfig, BertModel
from .modeling_openai import OpenAIGPTConfig, OpenAIGPTModel
from .modeling_gpt2 import GPT2Config, GPT2Model
from .modeling_transfo_xl import TransfoXLConfig, TransfoXLModel
from .modeling_xlnet import XLNetConfig, XLNetModel
from .modeling_xlm import XLMConfig, XLMModel

thomwolf's avatar
thomwolf committed
33
34
from .modeling_utils import PreTrainedModel, SequenceSummary

thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
logger = logging.getLogger(__name__)

class AutoConfig(object):
    r""":class:`~pytorch_transformers.AutoConfig` is a generic configuration class
        that will be instantiated as one of the configuration classes of the library
        when created with the `AutoConfig.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method take care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        This class cannot be instantiated using `__init__()` (throw an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoConfig is designed to be instantiated "
            "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r""" Instantiate a one of the configuration classes of the library
        from a pre-trained model configuration.

        The configuration class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        Params:
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model configuration to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a saved configuration `file`.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **return_unused_kwargs**: (`optional`) bool:
                - If False, then this function returns just the final configuration object.
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
                is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
                ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
            **kwargs**: (`optional`) dict:
                Dictionary of key/value pairs with which to update the configuration object after loading.
                - The values in kwargs of any keys which are configuration attributes will be used
                to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the `return_unused_kwargs` keyword parameter.

        Examples::

thomwolf's avatar
thomwolf committed
99
100
101
102
103
104
105
106
107
            config = AutoConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = AutoConfig.from_pretrained('./test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
            config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

        """
        if 'bert' in pretrained_model_name_or_path:
            return BertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Config.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm'".format(pretrained_model_name_or_path))


class AutoModel(object):
    r"""
        :class:`~pytorch_transformers.AutoModel` is a generic model class
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method take care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        This class cannot be instantiated using `__init__()` (throw an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModel is designed to be instantiated "
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiate a one of the base model classes of the library
        from a pre-trained model configuration.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

thomwolf's avatar
typos  
thomwolf committed
167
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            To train the model, you should first set it back in training mode with `model.train()`

        Params:
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a tensorflow index checkpoint `file` (e.g. `./tf_model/model.ckpt.index`).
                    In this case, ``from_tf`` should be set to True and a configuration object should be
                    provided as `config` argument. This loading option is slower than converting the TensorFlow
                    checkpoint in a PyTorch model using the provided conversion scripts and loading
                    the PyTorch model afterwards.
            **model_args**: (`optional`) Sequence:
                All remaning positional arguments will be passed to the underlying model's __init__ function
            **config**: an optional configuration for the model to use instead of an automatically loaded configuation.
                Configuration can be automatically loaded when:
                - the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
                - the model was saved using the `save_pretrained(save_directory)` (loaded by suppling the save directory).
            **state_dict**: an optional state dictionnary for the model to use instead of a state dictionary loaded
                from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
189
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
                In this case though, you should check if using `save_pretrained(dir)` and `from_pretrained(save_directory)` is not
                a simpler option.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **output_loading_info**: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            **kwargs**: (`optional`) dict:
                Dictionary of key, values to update the configuration object after loading.
                Can be used to override selected configuration parameters. E.g. ``output_attention=True``.

               - If a configuration is provided with `config`, **kwargs will be directly passed
                 to the underlying model's __init__ method.
               - If a configuration is not provided, **kwargs will be first passed to the pretrained
                 model configuration class loading function (`PretrainedConfig.from_pretrained`).
                 Each key of **kwargs that corresponds to a configuration attribute
                 will be used to override said attribute with the supplied **kwargs value.
                 Remaining keys that do not correspond to any configuration attribute will
                 be passed to the underlying model's __init__ function.

        Examples::

thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        """
        if 'bert' in pretrained_model_name_or_path:
            return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm'".format(pretrained_model_name_or_path))

thomwolf's avatar
thomwolf committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

class DerivedAutoModel(PreTrainedModel):
    r"""
        :class:`~pytorch_transformers.DerivedAutoModel` is a base class for building
        standardized derived models on top of :class:`~pytorch_transformers.AutoModel` by adding heads

        The `from_pretrained()` method take care of using the correct base model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        This class should usually not be instantiated using `__init__()` but `from_pretrained()`.
    """
    config_class = None
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = "transformer"

    def __init__(self, base_model):
        super(DerivedAutoModel, self).__init__(base_model.config)
        self.transformer = base_model

    def init_weights(self, module):
        """ Initialize the weights. Use the base model initialization function.
        """
        self.transformer.init_weights(module)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiate a :class:`~pytorch_transformers.DerivedAutoModel` with one of the base model classes of the library
        from a pre-trained model configuration.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
            To train the model, you should first set it back in training mode with `model.train()`

        Params:
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a tensorflow index checkpoint `file` (e.g. `./tf_model/model.ckpt.index`).
                    In this case, ``from_tf`` should be set to True and a configuration object should be
                    provided as `config` argument. This loading option is slower than converting the TensorFlow
                    checkpoint in a PyTorch model using the provided conversion scripts and loading
                    the PyTorch model afterwards.
            **model_args**: (`optional`) Sequence:
                All remaning positional arguments will be passed to the underlying model's __init__ function
            **config**: an optional configuration for the model to use instead of an automatically loaded configuation.
                Configuration can be automatically loaded when:
                - the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
                - the model was saved using the `save_pretrained(save_directory)` (loaded by suppling the save directory).
            **state_dict**: an optional state dictionnary for the model to use instead of a state dictionary loaded
                from saved weights file.
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
                In this case though, you should check if using `save_pretrained(dir)` and `from_pretrained(save_directory)` is not
                a simpler option.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **output_loading_info**: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            **kwargs**: (`optional`) dict:
                Dictionary of key, values to update the configuration object after loading.
                Can be used to override selected configuration parameters. E.g. ``output_attention=True``.

               - If a configuration is provided with `config`, **kwargs will be directly passed
                 to the underlying model's __init__ method.
               - If a configuration is not provided, **kwargs will be first passed to the pretrained
                 model configuration class loading function (`PretrainedConfig.from_pretrained`).
                 Each key of **kwargs that corresponds to a configuration attribute
                 will be used to override said attribute with the supplied **kwargs value.
                 Remaining keys that do not correspond to any configuration attribute will
                 be passed to the underlying model's __init__ function.

        Examples::

            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'bert' in pretrained_model_name_or_path:
            base_model_class = BertModel
        elif 'openai-gpt' in pretrained_model_name_or_path:
            base_model_class = OpenAIGPTModel
        elif 'gpt2' in pretrained_model_name_or_path:
            base_model_class = GPT2Model
        elif 'transfo-xl' in pretrained_model_name_or_path:
            base_model_class = TransfoXLModel
        elif 'xlnet' in pretrained_model_name_or_path:
            base_model_class = XLNetModel
        elif 'xlm' in pretrained_model_name_or_path:
            base_model_class = XLMModel
        else:
            raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                            "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                            "'xlm'".format(pretrained_model_name_or_path))

        # Get a pretrained base_model
        base_model = base_model_class.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        # Create our derived model
        model = cls(base_model)

        # Setup class attribute from the base model class
        model.config_class = base_model.config_class
        model.pretrained_model_archive_map = base_model.pretrained_model_archive_map
        model.load_tf_weights = base_model.load_tf_weights

        return model


class AutoModelWithLMHead(DerivedAutoModel):
    r"""
        :class:`~pytorch_transformers.AutoModelWithLMHead` is a base class for language modeling
        that contains
        
            - a base model instantiated as one of the base model classes of the library when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)` class method, and .
            - a language modeling head on top of the base model.

        The `from_pretrained()` method take care of using the correct base model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        This class should usually not be instantiated using `__init__()` but `from_pretrained()`.
    """

    def __init__(self, base_model):
        super(AutoModelWithLMHead, self).__init__(base_model)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        # get input embeddings - whatever the model is
        input_embeddings = self.transformer.resize_token_embeddings(new_num_tokens=None)

        # tie of clone (torchscript) embeddings
        self._tie_or_clone_weights(self.lm_head, input_embeddings)

    def forward(self, input_ids, **kwargs):
        labels = kwargs.pop('labels', None)  # Python 2 compatibility...

        transformer_outputs = self.transformer(input_ids, **kwargs)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,) + transformer_outputs[1:]
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)),
                            labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)


class AutoModelForSequenceClassification(DerivedAutoModel):
    r"""
        :class:`~pytorch_transformers.AutoModelForSequenceClassification` is a class for sequence classification
        that contains
        
            - a base model instantiated as one of the base model classes of the library when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)` class method, and .
            - a classification head on top of the base model.

        The `from_pretrained()` method take care of using the correct base model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)

        This class should usually not be instantiated using `__init__()` but `from_pretrained()`.
    """

    def __init__(self, base_model):
        super(AutoModelForSequenceClassification, self).__init__(base_model)
        self.num_labels = base_model.config.num_labels
        self.sequence_summary = SequenceSummary(base_model.config)

        self.apply(self.init_weights)

    def forward(self, input_ids, cls_index, **kwargs):
        labels = kwargs.pop('labels', None)  # Python 2 compatibility...

        transformer_outputs = self.transformer(input_ids, **kwargs)

        output = transformer_outputs[0]
        logits = self.sequence_summary(output, cls_index=cls_index)

        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs