modeling_utils.py 72.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""


import logging
import os

import torch
from torch import nn
24
25
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
26

27
from .configuration_utils import PretrainedConfig
28
from .file_utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
29
    DUMMY_INPUTS,
30
31
32
33
34
35
36
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
    cached_path,
    hf_bucket_url,
    is_remote_url,
)
37

Aymeric Augustin's avatar
Aymeric Augustin committed
38

39
40
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
41
42
43
44
45
46
47
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """
48

thomwolf's avatar
thomwolf committed
49
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
50
            super().__init__()
thomwolf's avatar
thomwolf committed
51
52
53
54

        def forward(self, input):
            return input

55

56
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
61
62
63
64
65
66
67
68
    """
    A few utilities for torch.nn.Modules, to be used as a mixin.
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
        Get number of (optionally, trainable) parameters in the module.
        """
        params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters()
        return sum(p.numel() for p in params)


69
class PreTrainedModel(nn.Module, ModuleUtilsMixin):
70
71
    r""" Base class for all models.

72
        :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
Julien Chaumond's avatar
Julien Chaumond committed
73
        as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
74
75

        Class attributes (overridden by derived classes):
76
            - ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
77
78
79
            - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
            - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:

80
81
                - ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`,
                - ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`,
82
83
84
                - ``path``: a path (string) to the TensorFlow checkpoint.

            - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
85
    """
86
    config_class = None
87
88
89
    pretrained_model_archive_map = {}
    base_model_prefix = ""

90
91
92
93
94
95
96
    @property
    def dummy_inputs(self):
        """ Dummy inputs to do a forward pass in the network.

        Returns:
            torch.Tensor with dummy inputs
        """
97
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
98

99
    def __init__(self, config, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
100
        super().__init__()
101
102
103
104
105
106
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
107
108
                )
            )
thomwolf's avatar
thomwolf committed
109
        # Save config in model
110
111
        self.config = config

112
113
114
    @property
    def base_model(self):
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
115

thomwolf's avatar
thomwolf committed
116
    def get_input_embeddings(self):
117
118
119
120
121
122
        """
        Returns the model's input embeddings.

        Returns:
            :obj:`nn.Module`:
                A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
123
        """
124
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
125
126
127
128
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
129

thomwolf's avatar
thomwolf committed
130
    def set_input_embeddings(self, value):
131
132
133
134
135
136
        """
        Set model's input embeddings

        Args:
            value (:obj:`nn.Module`):
                A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
143

thomwolf's avatar
thomwolf committed
144
    def get_output_embeddings(self):
145
146
147
148
149
150
        """
        Returns the model's output embeddings.

        Returns:
            :obj:`nn.Module`:
                A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
151
        """
152
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
153

154
    def tie_weights(self):
155
156
157
158
        """
        Tie the weights between the input embeddings and the output embeddings.
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
        the weights instead.
thomwolf's avatar
thomwolf committed
159
        """
thomwolf's avatar
thomwolf committed
160
161
162
        output_embeddings = self.get_output_embeddings()
        if output_embeddings is not None:
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
163

164
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
thomwolf's avatar
thomwolf committed
165
166
167
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
168
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
169
        else:
170
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
171

172
        if hasattr(output_embeddings, "bias") and output_embeddings.bias is not None:
173
174
175
            output_embeddings.bias.data = torch.nn.functional.pad(
                output_embeddings.bias.data,
                (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
176
177
                "constant",
                0,
178
            )
179
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
180
            output_embeddings.out_features = input_embeddings.num_embeddings
181

thomwolf's avatar
thomwolf committed
182
183
    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
184
        Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
185

186
187
188
        Arguments:

            new_num_tokens: (`optional`) int:
189
                New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end.
190
                If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
thomwolf's avatar
thomwolf committed
191

thomwolf's avatar
thomwolf committed
192
        Return: ``torch.nn.Embeddings``
193
            Pointer to the input tokens Embeddings Module of the model
thomwolf's avatar
thomwolf committed
194
195
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
196
197
198
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
205
        self.tie_weights()
thomwolf's avatar
thomwolf committed
206

thomwolf's avatar
thomwolf committed
207
208
        return model_embeds

209
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
210
211
212
213
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
        return self.get_input_embeddings()
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
        Return: ``torch.nn.Embeddings``
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

249
250
251
252
253
254
255
256
257
    def init_weights(self):
        """ Initialize and prunes weights if needed. """
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

258
259
260
        # Tie weights if needed
        self.tie_weights()

thomwolf's avatar
thomwolf committed
261
262
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
263
264
265
266

            Arguments:

                heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
267
                E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
268
        """
269
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
270
        for layer, heads in heads_to_prune.items():
271
272
273
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

274
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
275

276
    def save_pretrained(self, save_directory):
277
        """ Save a model and its configuration file to a directory, so that it
278
            can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
279
        """
280
281
282
        assert os.path.isdir(
            save_directory
        ), "Saving path should be a directory where the model and configuration can be saved"
283

Julien Chaumond's avatar
Julien Chaumond committed
284
        # Only save the model itself if we are using distributed training
285
        model_to_save = self.module if hasattr(self, "module") else self
286

Julien Chaumond's avatar
Julien Chaumond committed
287
288
289
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

thomwolf's avatar
thomwolf committed
290
291
292
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

293
294
295
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
thomwolf's avatar
thomwolf committed
296
        logger.info("Model weights saved in {}".format(output_model_file))
297

298
    @classmethod
299
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
300
301
        r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.

302
303
304
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with ``model.train()``

305
306
307
308
309
        The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
        It is up to you to train those weights with a downstream fine-tuning task.

        The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.

310
311
        Parameters:
            pretrained_model_name_or_path: either:
Lysandre's avatar
Fixes  
Lysandre committed
312
313
314
315
316
              - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
              - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
              - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
              - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
              - None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
317
318
319
320

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

321
            config: (`optional`) one of:
Lysandre's avatar
Fixes  
Lysandre committed
322
323
                - an instance of a class derived from :class:`~transformers.PretrainedConfig`, or
                - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()`
324
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
Lysandre's avatar
Fixes  
Lysandre committed
325
326
327
                    - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                    - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                    - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
328
329
330

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
331
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
332
                In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
333
334

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
335
336
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
337

338
339
340
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

341
342
343
            resume_download: (`optional`) boolean, default False:
                Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.

344
345
346
347
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

348
            output_loading_info: (`optional`) boolean:
thomwolf's avatar
thomwolf committed
349
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
350
351
352
353
354

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
355
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
356
357

        Examples::
thomwolf's avatar
thomwolf committed
358

Lysandre's avatar
Lysandre committed
359
            # For example purposes. Not runnable.
thomwolf's avatar
thomwolf committed
360
361
362
363
364
365
366
            model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
367

368
        """
369
370
371
372
373
374
375
376
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
thomwolf's avatar
thomwolf committed
377

378
379
380
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
381
            config, model_kwargs = cls.config_class.from_pretrained(
382
383
384
385
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
386
                force_download=force_download,
387
                resume_download=resume_download,
388
                proxies=proxies,
389
                **kwargs,
390
391
392
            )
        else:
            model_kwargs = kwargs
393

thomwolf's avatar
thomwolf committed
394
        # Load model
thomwolf's avatar
thomwolf committed
395
        if pretrained_model_name_or_path is not None:
396
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
thomwolf's avatar
thomwolf committed
397
398
                archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
            elif os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
399
400
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
                    # Load from a TF 1.0 checkpoint
thomwolf's avatar
thomwolf committed
401
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
402
403
404
405
406
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    # Load from a TF 2.0 checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
407
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
408
                else:
409
410
411
412
413
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} or `from_tf` set to False".format(
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path
                        )
                    )
414
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
415
                archive_file = pretrained_model_name_or_path
416
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
417
418
419
420
421
                assert (
                    from_tf
                ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
                    pretrained_model_name_or_path + ".index"
                )
422
                archive_file = pretrained_model_name_or_path + ".index"
423
            else:
424
                archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=WEIGHTS_NAME)
Julien Chaumond's avatar
Julien Chaumond committed
425
                if from_tf:
426
427
428
                    raise EnvironmentError(
                        "Loading a PyTorch model from a TF checkpoint is not supported when using a model identifier name."
                    )
429

thomwolf's avatar
thomwolf committed
430
431
            # redirect to the cache, if necessary
            try:
432
433
434
435
436
437
438
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                )
thomwolf's avatar
thomwolf committed
439
            except EnvironmentError:
thomwolf's avatar
thomwolf committed
440
                if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
441
                    msg = "Couldn't reach server at '{}' to download pretrained weights.".format(archive_file)
thomwolf's avatar
thomwolf committed
442
                else:
443
444
445
                    msg = (
                        "Model name '{}' was not found in model name list ({}). "
                        "We assumed '{}' was a path or url to model weight files named one of {} but "
thomwolf's avatar
thomwolf committed
446
                        "couldn't find any such file at this path or url.".format(
thomwolf's avatar
thomwolf committed
447
                            pretrained_model_name_or_path,
448
                            ", ".join(cls.pretrained_model_archive_map.keys()),
thomwolf's avatar
thomwolf committed
449
                            archive_file,
450
451
452
                            [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME],
                        )
                    )
thomwolf's avatar
thomwolf committed
453
454
                raise EnvironmentError(msg)

thomwolf's avatar
thomwolf committed
455
456
            if resolved_archive_file == archive_file:
                logger.info("loading weights file {}".format(archive_file))
457
            else:
458
                logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
459
        else:
thomwolf's avatar
thomwolf committed
460
            resolved_archive_file = None
461
462

        # Instantiate model.
463
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
464

465
        if state_dict is None and not from_tf:
466
            try:
467
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
468
            except Exception:
469
470
471
472
                raise OSError(
                    "Unable to load weights from pytorch checkpoint file. "
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )
473

474
475
476
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
477
478

        if from_tf:
479
            if resolved_archive_file.endswith(".index"):
480
481
482
483
484
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
485
                    from transformers import load_tf2_checkpoint_in_pytorch_model
486

487
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
488
                except ImportError:
489
490
491
492
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
493
                    raise
494
495
496
497
498
499
        else:
            # Convert old format to new format if needed from a PyTorch state_dict
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                new_key = None
500
501
502
503
                if "gamma" in key:
                    new_key = key.replace("gamma", "weight")
                if "beta" in key:
                    new_key = key.replace("beta", "bias")
504
505
506
507
508
509
510
                if new_key:
                    old_keys.append(key)
                    new_keys.append(new_key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

            # copy state_dict so _load_from_state_dict can modify it
511
            metadata = getattr(state_dict, "_metadata", None)
512
513
514
515
            state_dict = state_dict.copy()
            if metadata is not None:
                state_dict._metadata = metadata

516
517
            # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
            # so we need to apply the function recursively.
Julien Chaumond's avatar
Julien Chaumond committed
518
            def load(module: nn.Module, prefix=""):
519
520
                local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
                module._load_from_state_dict(
521
522
                    state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
                )
523
524
                for name, child in module._modules.items():
                    if child is not None:
525
                        load(child, prefix + name + ".")
526
527

            # Make sure we are able to load base models as well as derived models (with heads)
528
            start_prefix = ""
529
            model_to_load = model
530
531
532
533
534
535
536
            if not hasattr(model, cls.base_model_prefix) and any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()
            ):
                start_prefix = cls.base_model_prefix + "."
            if hasattr(model, cls.base_model_prefix) and not any(
                s.startswith(cls.base_model_prefix) for s in state_dict.keys()
            ):
537
538
539
540
                model_to_load = getattr(model, cls.base_model_prefix)

            load(model_to_load, prefix=start_prefix)
            if len(missing_keys) > 0:
541
542
543
544
545
                logger.info(
                    "Weights of {} not initialized from pretrained model: {}".format(
                        model.__class__.__name__, missing_keys
                    )
                )
546
            if len(unexpected_keys) > 0:
547
548
549
550
551
                logger.info(
                    "Weights from pretrained model not used in {}: {}".format(
                        model.__class__.__name__, unexpected_keys
                    )
                )
552
            if len(error_msgs) > 0:
553
554
555
556
557
                raise RuntimeError(
                    "Error(s) in loading state_dict for {}:\n\t{}".format(
                        model.__class__.__name__, "\n\t".join(error_msgs)
                    )
                )
558

559
        model.tie_weights()  # make sure word embedding weights are still tied if needed
560

561
562
563
        # Set model in evaluation mode to desactivate DropOut modules by default
        model.eval()

thomwolf's avatar
thomwolf committed
564
565
566
567
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

568
569
        return model

thomwolf's avatar
thomwolf committed
570
571
572
    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {"input_ids": input_ids}

573
    def _do_output_past(self, outputs):
574
575
        has_output_past = hasattr(self.config, "output_past") and self.config.output_past
        has_mem_len = hasattr(self.config, "mem_len") and self.config.mem_len
576

577
        if has_output_past and not has_mem_len and len(outputs) > 1:
578
            return True
579
580
581
        elif has_mem_len and self.config.mem_len > 0 and len(outputs) > 1:
            return True

582
583
        return False

thomwolf's avatar
thomwolf committed
584
    @torch.no_grad()
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    def generate(
        self,
        input_ids=None,
        max_length=None,
        do_sample=None,
        num_beams=None,
        temperature=None,
        top_k=None,
        top_p=None,
        repetition_penalty=None,
        bos_token_id=None,
        pad_token_id=None,
        eos_token_ids=None,
        length_penalty=None,
        num_return_sequences=None,
    ):
601
        r""" Generates sequences for models with a LM head. The method currently supports greedy or penalized greedy decoding, sampling with top-k or nucleus sampling
thomwolf's avatar
thomwolf committed
602
        and beam-search.
thomwolf's avatar
thomwolf committed
603

604
605
606
607
608
609
610
        Adapted in part from `Facebook's XLM beam search code`_.

        .. _`Facebook's XLM beam search code`:
           https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529


        Parameters:
thomwolf's avatar
thomwolf committed
611

612
            input_ids: (`optional`) `torch.LongTensor` of shape `(batch_size, sequence_length)`
thomwolf's avatar
thomwolf committed
613
                The sequence used as a prompt for the generation. If `None` the method initializes
614
615
616
                it as an empty `torch.LongTensor` of shape `(1,)`.

            max_length: (`optional`) int
thomwolf's avatar
thomwolf committed
617
                The max length of the sequence to be generated.  Between 1 and infinity. Default to 20.
618
619
620
621
622
623
624
625
626
627
628

            do_sample: (`optional`) bool
                If set to `False` greedy decoding is used. Otherwise sampling is used. Default to greedy sampling.

            num_beams: (`optional`) int
                Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1.

            temperature: (`optional`) float
                The value used to module the next token probabilities. Must be strictely positive. Default to 1.0.

            top_k: (`optional`) int
thomwolf's avatar
thomwolf committed
629
                The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
630
631

            top_p: (`optional`) float
thomwolf's avatar
thomwolf committed
632
                The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
633
634
635
636
637

            repetition_penalty: (`optional`) float
                The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.

            bos_token_id: (`optional`) int
thomwolf's avatar
thomwolf committed
638
                Beginning of sentence token if no prompt is provided. Default to 0.
639
640

            eos_token_ids: (`optional`) int or list of int
thomwolf's avatar
thomwolf committed
641
                End of sequence token or list of tokens to stop the generation. Default to 0.
642
            length_penalty: (`optional`) float
thomwolf's avatar
thomwolf committed
643
                Exponential penalty to the length. Default to 1.
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

            num_return_sequences: (`optional`) int
                The number of independently computed returned sequences for each element in the batch. Default to 1.

        Examples::

            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            outputs = model.generate(max_length=40, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id)  # do greedy decoding without beam search
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))

            tokenizer = AutoTokenizer.from_pretrained('openai-gpt')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('openai-gpt')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0)  # encode input context
659
            outputs = model.generate(input_ids=input_ids, do_sample=True, num_beams=5, num_return_sequences=3, temperature=1.5)  # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
660
661
662
663
664
665
666
            for i in range(3): #  3 output sequences were generated
                print('Generated {}: {}'.format(i, tokenizer.decode(outputs[0][i], skip_special_tokens=True)))

            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from S3 and cache.
            input_context = 'The dog'
            input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0)  # encode input context
667
            outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3)  # generate sequences using greedy beam search decoding (3 beams)
668
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
669
670
671
672
673
674
675
676

            tokenizer = AutoTokenizer.from_pretrained('ctrl')   # Initialize tokenizer
            model = AutoModelWithLMHead.from_pretrained('ctrl')    # Download model and configuration from S3 and cache.
            input_context = 'Legal My neighbor is'  # "Legal" is one of the control codes for ctrl
            input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0)  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2)  # generate sequences using using greedy search
            print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))

thomwolf's avatar
thomwolf committed
677
678
679
680
        """

        # We cannot generate if the model does not have a LM head
        if self.get_output_embeddings() is None:
681
682
            raise AttributeError(
                "You tried to generate sequences with a model that does not have a LM Head."
683
                "Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`)"
684
            )
thomwolf's avatar
thomwolf committed
685

686
687
688
689
690
691
692
693
694
695
696
        max_length = max_length if max_length is not None else self.config.max_length
        do_sample = do_sample if do_sample is not None else self.config.do_sample
        num_beams = num_beams if num_beams is not None else self.config.num_beams
        temperature = temperature if temperature is not None else self.config.temperature
        top_k = top_k if top_k is not None else self.config.top_k
        top_p = top_p if top_p is not None else self.config.top_p
        repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_ids = eos_token_ids if eos_token_ids is not None else self.config.eos_token_ids
        length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
697
698
699
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
thomwolf's avatar
thomwolf committed
700
701
702

        if input_ids is not None:
            batch_size = input_ids.shape[0]  # overriden by the input batch_size
thomwolf's avatar
thomwolf committed
703
704
        else:
            batch_size = 1
thomwolf's avatar
thomwolf committed
705
706
707
        if isinstance(eos_token_ids, int):
            eos_token_ids = [eos_token_ids]

thomwolf's avatar
thomwolf committed
708
        assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictely positive integer."
thomwolf's avatar
thomwolf committed
709
        assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
thomwolf's avatar
thomwolf committed
710
        assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictely positive integer."
711
        assert temperature > 0, "`temperature` should be strictely positive."
712
        assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
thomwolf's avatar
thomwolf committed
713
        assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
thomwolf's avatar
thomwolf committed
714
715
716
        assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
        assert isinstance(bos_token_id, int) and bos_token_id >= 0, "`bos_token_id` should be a positive integer."
        assert isinstance(pad_token_id, int) and pad_token_id >= 0, "`pad_token_id` should be a positive integer."
717
718
719
        assert isinstance(eos_token_ids, (list, tuple)) and (
            e >= 0 for e in eos_token_ids
        ), "`eos_token_ids` should be a positive integer or a list/tuple of positive integers."
thomwolf's avatar
thomwolf committed
720
        assert length_penalty > 0, "`length_penalty` should be strictely positive."
721
722
723
        assert (
            isinstance(num_return_sequences, int) and num_return_sequences > 0
        ), "`num_return_sequences` should be a strictely positive integer."
thomwolf's avatar
thomwolf committed
724
725

        if input_ids is None:
726
727
728
            input_ids = torch.full(
                (batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device
            )
thomwolf's avatar
thomwolf committed
729
        else:
730
            assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
thomwolf's avatar
thomwolf committed
731
732

        # current position and vocab size
thomwolf's avatar
thomwolf committed
733
        cur_len = input_ids.shape[1]
thomwolf's avatar
thomwolf committed
734
735
        vocab_size = self.config.vocab_size

thomwolf's avatar
thomwolf committed
736
737
738
        if num_return_sequences != 1:
            # Expand input to num return sequences
            input_ids = input_ids.unsqueeze(1).expand(batch_size, num_return_sequences, cur_len)
739
740
741
            input_ids = input_ids.contiguous().view(
                batch_size * num_return_sequences, cur_len
            )  # (batch_size * num_return_sequences, cur_len)
thomwolf's avatar
thomwolf committed
742
743
744
745
            effective_batch_size = batch_size * num_return_sequences
        else:
            effective_batch_size = batch_size

thomwolf's avatar
thomwolf committed
746
        if num_beams > 1:
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
            output = self._generate_beam_search(
                input_ids,
                cur_len,
                max_length,
                do_sample,
                temperature,
                top_k,
                top_p,
                repetition_penalty,
                pad_token_id,
                eos_token_ids,
                effective_batch_size,
                length_penalty,
                num_beams,
                vocab_size,
            )
thomwolf's avatar
thomwolf committed
763
        else:
764
765
766
767
768
769
770
771
772
773
774
775
776
            output = self._generate_no_beam_search(
                input_ids,
                cur_len,
                max_length,
                do_sample,
                temperature,
                top_k,
                top_p,
                repetition_penalty,
                pad_token_id,
                eos_token_ids,
                effective_batch_size,
            )
thomwolf's avatar
thomwolf committed
777
778
779
780

        if num_return_sequences != 1:
            output = output.view(batch_size, num_return_sequences, -1)
        return output
thomwolf's avatar
thomwolf committed
781

782
783
784
785
786
787
788
789
790
791
792
793
794
795
    def _generate_no_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        pad_token_id,
        eos_token_ids,
        batch_size,
    ):
thomwolf's avatar
thomwolf committed
796
        """ Generate sequences for each example without beam search (num_beams == 1).
797
798
            All returned sequence are generated independantly.
        """
thomwolf's avatar
thomwolf committed
799
        # current position / max lengths / length of generated sentences / unfinished sentences
thomwolf's avatar
thomwolf committed
800
        unfinished_sents = input_ids.new(batch_size).fill_(1)
thomwolf's avatar
thomwolf committed
801

802
        past = None
thomwolf's avatar
thomwolf committed
803
804

        while cur_len < max_length:
805
            model_inputs = self.prepare_inputs_for_generation(input_ids, past=past)
thomwolf's avatar
thomwolf committed
806
807
808
            outputs = self(**model_inputs)
            next_token_logits = outputs[0][:, -1, :]

patrickvonplaten's avatar
patrickvonplaten committed
809
            # if model has past, then set the past variable to speed up decoding
810
            if self._do_output_past(outputs):
811
812
                past = outputs[1]

thomwolf's avatar
thomwolf committed
813
814
            # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
thomwolf's avatar
thomwolf committed
815
                for i in range(batch_size):
816
                    for previous_token in set(input_ids[i].tolist()):
817
                        # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
818
819
                        if next_token_logits[i, previous_token] < 0:
                            next_token_logits[i, previous_token] *= repetition_penalty
820
                        else:
821
                            next_token_logits[i, previous_token] /= repetition_penalty
thomwolf's avatar
thomwolf committed
822
823
824

            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
825
                if temperature != 1.0:
thomwolf's avatar
thomwolf committed
826
827
828
829
                    next_token_logits = next_token_logits / temperature
                # Top-p/top-k filtering
                next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
                # Sample
830
                next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(1)
thomwolf's avatar
thomwolf committed
831
832
            else:
                # Greedy decoding
833
                next_token = torch.argmax(next_token_logits, dim=-1)
thomwolf's avatar
thomwolf committed
834
835
836

            # update generations and finished sentences
            tokens_to_add = next_token * unfinished_sents + pad_token_id * (1 - unfinished_sents)
837
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
thomwolf's avatar
thomwolf committed
838
            for eos_token_id in eos_token_ids:
839
                unfinished_sents.mul_(tokens_to_add.ne(eos_token_id).long())
thomwolf's avatar
thomwolf committed
840
841
842
843
844
845
846
847
            cur_len = cur_len + 1

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break

        # add eos_token_ids to unfinished sentences
        if cur_len == max_length:
848
849
            input_ids[:, -1].masked_fill_(unfinished_sents.to(dtype=torch.bool), eos_token_ids[0])

thomwolf's avatar
thomwolf committed
850
851
        return input_ids

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    def _generate_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        pad_token_id,
        eos_token_ids,
        batch_size,
        length_penalty,
        num_beams,
        vocab_size,
    ):
thomwolf's avatar
thomwolf committed
869
        """ Generate sequences for each example with beam search.
870
        """
thomwolf's avatar
thomwolf committed
871
872
        # Expand input to num beams
        input_ids = input_ids.unsqueeze(1).expand(batch_size, num_beams, cur_len)
873
        input_ids = input_ids.contiguous().view(batch_size * num_beams, cur_len)  # (batch_size * num_beams, cur_len)
thomwolf's avatar
thomwolf committed
874
875

        # generated hypotheses
876
877
878
        generated_hyps = [
            BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=False) for _ in range(batch_size)
        ]
thomwolf's avatar
thomwolf committed
879
880
881
882

        # scores for each sentence in the beam
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
883
        beam_scores = beam_scores.view(-1)  # shape (batch_size * num_beams,)
thomwolf's avatar
thomwolf committed
884
885

        # cache compute states
886
        past = None
thomwolf's avatar
thomwolf committed
887
888
889
890
891

        # done sentences
        done = [False for _ in range(batch_size)]

        while cur_len < max_length:
892
893
894
895
            model_inputs = self.prepare_inputs_for_generation(input_ids, past=past)
            outputs = self(**model_inputs)  # (batch_size * num_beams, cur_len, vocab_size)
            scores = outputs[0][:, -1, :]  # (batch_size * num_beams, vocab_size)

patrickvonplaten's avatar
patrickvonplaten committed
896
            # if model has past, then set the past variable to speed up decoding
897
            if self._do_output_past(outputs):
898
                past = outputs[1]
thomwolf's avatar
thomwolf committed
899

900
901
902
            # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
                for i in range(batch_size * num_beams):
903
                    for previous_token in set(input_ids[i].tolist()):
904
                        # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
905
906
                        if scores[i, previous_token] < 0:
                            scores[i, previous_token] *= repetition_penalty
907
                        else:
908
                            scores[i, previous_token] /= repetition_penalty
thomwolf's avatar
thomwolf committed
909

910
911
            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
912
                if temperature != 1.0:
913
914
                    scores = scores / temperature
                # Top-p/top-k filtering
915
916
917
                scores = top_k_top_p_filtering(
                    scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2
                )  # (batch_size * num_beams, vocab_size)
918
                # Sample 2 next words for each beam (so we have some spare tokens and match output of greedy beam search)
919
                next_words = torch.multinomial(F.softmax(scores, dim=-1), num_samples=2)  # (batch_size * num_beams, 2)
920
                # Compute next scores
921
922
923
                _scores = F.log_softmax(scores, dim=-1)  # (batch_size * num_beams, vocab_size)
                _scores = torch.gather(_scores, -1, next_words)  # (batch_size * num_beams, 2)
                next_scores = _scores + beam_scores[:, None].expand_as(_scores)  # (batch_size * num_beams, 2)
924
                # Match shape of greedy beam search
925
926
                next_words = next_words.view(batch_size, 2 * num_beams)  # (batch_size, 2 * num_beams)
                next_scores = next_scores.view(batch_size, 2 * num_beams)  # (batch_size, 2 * num_beams)
927
928
            else:
                # do greedy beam search
929
                scores = F.log_softmax(scores, dim=-1)  # (batch_size * num_beams, vocab_size)
930
931
                assert scores.size() == (batch_size * num_beams, vocab_size)
                # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
932
                _scores = scores + beam_scores[:, None].expand_as(scores)  # (batch_size * num_beams, vocab_size)
933
                # re-organize to group the beam together (we are keeping top hypothesis accross beams)
934
935
                _scores = _scores.view(batch_size, num_beams * vocab_size)  # (batch_size, num_beams * vocab_size)
                next_scores, next_words = torch.topk(_scores, 2 * num_beams, dim=1, largest=True, sorted=True)
thomwolf's avatar
thomwolf committed
936
937
938
939
940
941
942
943

            assert next_scores.size() == next_words.size() == (batch_size, 2 * num_beams)

            # next batch beam content
            # list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch)
            next_batch_beam = []

            # for each sentence
thomwolf's avatar
thomwolf committed
944
            for batch_ex in range(batch_size):
thomwolf's avatar
thomwolf committed
945
946

                # if we are done with this sentence
thomwolf's avatar
thomwolf committed
947
948
                done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item())
                if done[batch_ex]:
thomwolf's avatar
thomwolf committed
949
950
951
952
953
954
955
                    next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams)  # pad the batch
                    continue

                # next sentence beam content
                next_sent_beam = []

                # next words for this sentence
thomwolf's avatar
thomwolf committed
956
                for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]):
thomwolf's avatar
thomwolf committed
957
958
959
960
961
962
963

                    # get beam and word IDs
                    beam_id = idx // vocab_size
                    word_id = idx % vocab_size

                    # end of sentence, or next word
                    if word_id.item() in eos_token_ids or cur_len + 1 == max_length:
964
965
966
                        generated_hyps[batch_ex].add(
                            input_ids[batch_ex * num_beams + beam_id, :cur_len].clone(), score.item()
                        )
thomwolf's avatar
thomwolf committed
967
                    else:
thomwolf's avatar
thomwolf committed
968
                        next_sent_beam.append((score, word_id, batch_ex * num_beams + beam_id))
thomwolf's avatar
thomwolf committed
969
970
971
972
973
974
975
976
977
978

                    # the beam for next step is full
                    if len(next_sent_beam) == num_beams:
                        break

                # update next beam content
                assert len(next_sent_beam) == 0 if cur_len + 1 == max_length else num_beams
                if len(next_sent_beam) == 0:
                    next_sent_beam = [(0, pad_token_id, 0)] * num_beams  # pad the batch
                next_batch_beam.extend(next_sent_beam)
thomwolf's avatar
thomwolf committed
979
                assert len(next_batch_beam) == num_beams * (batch_ex + 1)
thomwolf's avatar
thomwolf committed
980
981
982
983
984
985
986

            # sanity check / prepare next batch
            assert len(next_batch_beam) == batch_size * num_beams
            beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
            beam_words = input_ids.new([x[1] for x in next_batch_beam])
            beam_idx = input_ids.new([x[2] for x in next_batch_beam])

987
            # re-order batch
thomwolf's avatar
thomwolf committed
988
989
            input_ids = input_ids[beam_idx, :]
            input_ids = torch.cat([input_ids, beam_words.unsqueeze(1)], dim=-1)
990
991
992
993
994

            # re-order internal states
            if past:
                reordered_past = []
                for layer_past in past:
995
996
                    # get the correct batch idx from layer past batch dim
                    # batch dim of `past` and `mems` is at 2nd position
997
                    reordered_layer_past = [layer_past[:, i].unsqueeze(1).clone().detach() for i in beam_idx]
998
999
1000
1001
                    reordered_layer_past = torch.cat(reordered_layer_past, dim=1)
                    # check that shape matches
                    assert reordered_layer_past.shape == layer_past.shape
                    reordered_past.append(reordered_layer_past)
1002
                past = tuple(reordered_past)
thomwolf's avatar
thomwolf committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

            # update current length
            cur_len = cur_len + 1

            # stop when we are done with each sentence
            if all(done):
                break

        # visualize hypotheses
        # print([len(x) for x in generated_hyps], cur_len)
        # globals().update( locals() );
        # !import code; code.interact(local=vars())
        # for ii in range(batch_size):
        #     for ss, ww in sorted(generated_hyps[ii].hyp, key=lambda x: x[0], reverse=True):
        #         print("%.3f " % ss + " ".join(self.dico[x] for x in ww.tolist()))
        #     print("")

        # select the best hypotheses
thomwolf's avatar
thomwolf committed
1021
1022
        tgt_len = input_ids.new(batch_size)
        best = []
thomwolf's avatar
thomwolf committed
1023
1024

        for i, hypotheses in enumerate(generated_hyps):
thomwolf's avatar
thomwolf committed
1025
1026
1027
            best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1]
            tgt_len[i] = len(best_hyp) + 1  # +1 for the <EOS> symbol
            best.append(best_hyp)
thomwolf's avatar
thomwolf committed
1028
1029

        # generate target batch
thomwolf's avatar
thomwolf committed
1030
1031
        decoded = input_ids.new(batch_size, tgt_len.max().item()).fill_(pad_token_id)
        for i, hypo in enumerate(best):
1032
            decoded[i, : tgt_len[i] - 1] = hypo
thomwolf's avatar
thomwolf committed
1033
            decoded[i, tgt_len[i] - 1] = eos_token_ids[0]
thomwolf's avatar
thomwolf committed
1034

thomwolf's avatar
thomwolf committed
1035
1036
1037
        return decoded


1038
def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
thomwolf's avatar
thomwolf committed
1039
1040
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
thomwolf's avatar
thomwolf committed
1041
            logits: logits distribution shape (batch size, vocabulary size)
1042
1043
            if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
thomwolf's avatar
thomwolf committed
1044
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
thomwolf's avatar
thomwolf committed
1045
            Make sure we keep at least min_tokens_to_keep per batch example in the output
thomwolf's avatar
thomwolf committed
1046
1047
1048
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if top_k > 0:
thomwolf's avatar
thomwolf committed
1049
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
thomwolf's avatar
thomwolf committed
1050
1051
1052
1053
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

1054
    if top_p < 1.0:
thomwolf's avatar
thomwolf committed
1055
1056
1057
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

thomwolf's avatar
thomwolf committed
1058
        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
thomwolf's avatar
thomwolf committed
1059
        sorted_indices_to_remove = cumulative_probs > top_p
thomwolf's avatar
thomwolf committed
1060
1061
1062
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
thomwolf's avatar
thomwolf committed
1063
1064
1065
1066
1067
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
1068
        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
thomwolf's avatar
thomwolf committed
1069
1070
        logits[indices_to_remove] = filter_value
    return logits
thomwolf's avatar
thomwolf committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089


class BeamHypotheses(object):
    def __init__(self, n_hyp, max_length, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_length = max_length - 1  # ignoring bos_token
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.n_hyp = n_hyp
        self.hyp = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.hyp)
thomwolf's avatar
thomwolf committed
1090

thomwolf's avatar
thomwolf committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.n_hyp or score > self.worst_score:
            self.hyp.append((score, hyp))
            if len(self) > self.n_hyp:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
                del self.hyp[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)
thomwolf's avatar
thomwolf committed
1104

thomwolf's avatar
thomwolf committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    def is_done(self, best_sum_logprobs):
        """
        If there are enough hypotheses and that none of the hypotheses being generated
        can become better than the worst one in the heap, then we are done with this sentence.
        """
        if len(self) < self.n_hyp:
            return False
        elif self.early_stopping:
            return True
        else:
            return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty
thomwolf's avatar
thomwolf committed
1116
1117


thomwolf's avatar
thomwolf committed
1118
1119
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
1120
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
1121
1122
            Basically works like a Linear layer but the weights are transposed
        """
Julien Chaumond's avatar
Julien Chaumond committed
1123
        super().__init__()
thomwolf's avatar
thomwolf committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
1137
1138
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
1139

thomwolf's avatar
thomwolf committed
1140
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1141
        super().__init__()
thomwolf's avatar
thomwolf committed
1142
1143
1144
1145
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
1146
1147
1148
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
1149
        """
thomwolf's avatar
thomwolf committed
1150
1151
1152
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
1153
1154
1155
1156
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1157
1158
1159
1160
1161
1162
1163

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
1164

thomwolf's avatar
thomwolf committed
1165
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1166
        super().__init__()
thomwolf's avatar
thomwolf committed
1167
1168
1169
1170
1171
1172
1173
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
1174
1175
1176
1177
1178
1179
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
1180
                position of the first token for the labeled span:
1181
1182
1183
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
1184
        """
1185
1186
1187
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1188
        if start_positions is not None:
1189
            slen, hsz = hidden_states.shape[-2:]
1190
1191
1192
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1193
1194
1195
1196
1197
1198
1199

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
1200
1201
1202
1203
            if next(self.parameters()).dtype == torch.float16:
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1204
1205
1206
1207
1208
1209

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
1210

thomwolf's avatar
thomwolf committed
1211
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1212
        super().__init__()
thomwolf's avatar
thomwolf committed
1213
1214
1215
1216
1217
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
1233
        """
1234
        hsz = hidden_states.shape[-1]
1235
1236
1237
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1238
        if start_positions is not None:
1239
1240
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1241
1242

        if cls_index is not None:
1243
1244
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1245
        else:
1246
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1247
1248
1249
1250
1251
1252
1253
1254
1255

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
1256
1257
1258
    r""" A SQuAD head inspired by XLNet.

    Parameters:
1259
        config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model.
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
1279
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1280
1281
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1282
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1283
1284
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1285
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1286
1287
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1288
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1289
1290
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
1291
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
1292
1293
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
1294
    """
1295

thomwolf's avatar
thomwolf committed
1296
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1297
        super().__init__()
thomwolf's avatar
thomwolf committed
1298
1299
1300
1301
1302
1303
1304
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

1305
1306
1307
    def forward(
        self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None
    ):
thomwolf's avatar
thomwolf committed
1308
1309
        outputs = ()

thomwolf's avatar
thomwolf committed
1310
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
1334
1335

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1336
1337
1338
1339

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
            start_log_probs = F.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1352
1353
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
1354
            end_log_probs = F.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
1355

1356
1357
1358
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
1368
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
1369
1370
1371
1372
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
1373
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
1374
1375
1376
1377
1378
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
thomwolf's avatar
thomwolf committed
1379
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
thomwolf's avatar
thomwolf committed
1380
1381
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
1382
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
1383
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
1384
1385
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
1386
    """
1387

thomwolf's avatar
thomwolf committed
1388
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1389
        super().__init__()
thomwolf's avatar
thomwolf committed
1390

1391
1392
        self.summary_type = config.summary_type if hasattr(config, "summary_type") else "last"
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1393
1394
1395
1396
1397
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
1398
        self.summary = Identity()
1399
1400
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
1401
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
1402
1403
1404
1405
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

thomwolf's avatar
thomwolf committed
1406
        self.activation = Identity()
1407
        if hasattr(config, "summary_activation") and config.summary_activation == "tanh":
thomwolf's avatar
thomwolf committed
1408
1409
            self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
1410
        self.first_dropout = Identity()
1411
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
1412
1413
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
1414
        self.last_dropout = Identity()
1415
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
1416
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
1417

thomwolf's avatar
thomwolf committed
1418
    def forward(self, hidden_states, cls_index=None):
1419
        """ hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer.
thomwolf's avatar
thomwolf committed
1420
            cls_index: [optional] position of the classification token if summary_type == 'cls_index',
thomwolf's avatar
thomwolf committed
1421
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
thomwolf's avatar
thomwolf committed
1422
                if summary_type == 'cls_index' and cls_index is None:
thomwolf's avatar
thomwolf committed
1423
1424
                    we take the last token of the sequence as classification token
        """
1425
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1426
            output = hidden_states[:, -1]
1427
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1428
            output = hidden_states[:, 0]
1429
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
1430
            output = hidden_states.mean(dim=1)
1431
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
1432
            if cls_index is None:
1433
                cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long)
thomwolf's avatar
thomwolf committed
1434
            else:
thomwolf's avatar
thomwolf committed
1435
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
1436
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1437
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1438
1439
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1440
1441
            raise NotImplementedError

1442
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
1443
1444
        output = self.summary(output)
        output = self.activation(output)
1445
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
1446
1447
1448
1449

        return output


1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))