modeling_distilbert.py 34.1 KB
Newer Older
VictorSanh's avatar
wip  
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
VictorSanh's avatar
wip  
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
16
17
""" PyTorch DistilBERT model
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
    and in part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
VictorSanh's avatar
wip  
VictorSanh committed
18
19
20
21
22
23
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
VictorSanh's avatar
VictorSanh committed
24
import copy
VictorSanh's avatar
wip  
VictorSanh committed
25
26
27
28
29
30
31
32
33
import sys
from io import open

import itertools
import numpy as np

import torch
import torch.nn as nn

34
35
36
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_distilbert import DistilBertConfig
from .file_utils import add_start_docstrings
VictorSanh's avatar
wip  
VictorSanh committed
37
38
39
40
41

import logging
logger = logging.getLogger(__name__)


thomwolf's avatar
thomwolf committed
42
43
44
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin"
VictorSanh's avatar
wip  
VictorSanh committed
45
46
47
}


VictorSanh's avatar
VictorSanh committed
48
### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ###
VictorSanh's avatar
wip  
VictorSanh committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def gelu(x):
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False

class Embeddings(nn.Module):
    def __init__(self,
                 config):
        super(Embeddings, self).__init__()
VictorSanh's avatar
VictorSanh committed
66
        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
VictorSanh's avatar
wip  
VictorSanh committed
67
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
VictorSanh's avatar
VictorSanh committed
68
        if config.sinusoidal_pos_embds:
VictorSanh's avatar
wip  
VictorSanh committed
69
70
71
72
73
74
75
76
77
78
79
            create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
                                         dim=config.dim,
                                         out=self.position_embeddings.weight)

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters
        ----------
VictorSanh's avatar
VictorSanh committed
80
81
82
83
84
85
86
        input_ids: torch.tensor(bs, max_seq_length)
            The token ids to embed.

        Outputs
        -------
        embeddings: torch.tensor(bs, max_seq_length, dim)
            The embedded tokens (plus position embeddings, no token_type embeddings)
VictorSanh's avatar
wip  
VictorSanh committed
87
88
89
90
91
92
93
94
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)                      # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)                   # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)        # (bs, max_seq_length, dim)

VictorSanh's avatar
VictorSanh committed
95
96
97
        embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)             # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)               # (bs, max_seq_length, dim)
VictorSanh's avatar
wip  
VictorSanh committed
98
99
100
        return embeddings

class MultiHeadSelfAttention(nn.Module):
LysandreJik's avatar
LysandreJik committed
101
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
102
103
104
105
106
107
108
109
110
        super(MultiHeadSelfAttention, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0

VictorSanh's avatar
VictorSanh committed
111
112
113
114
        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
VictorSanh's avatar
wip  
VictorSanh committed
115

116
117
        self.pruned_heads = set()

118
119
120
121
122
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
123
        heads = set(heads) - self.pruned_heads
124
        for head in heads:
125
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
126
127
128
129
130
131
132
133
134
135
136
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
137
        self.pruned_heads = self.pruned_heads.union(heads)
138

LysandreJik's avatar
LysandreJik committed
139
    def forward(self, query, key, value, mask, head_mask = None):
VictorSanh's avatar
wip  
VictorSanh committed
140
141
142
143
144
145
146
147
        """
        Parameters
        ----------
        query: torch.tensor(bs, seq_length, dim)
        key: torch.tensor(bs, seq_length, dim)
        value: torch.tensor(bs, seq_length, dim)
        mask: torch.tensor(bs, seq_length)

VictorSanh's avatar
VictorSanh committed
148
149
        Outputs
        -------
VictorSanh's avatar
wip  
VictorSanh committed
150
151
152
        weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
153
            Contextualized layer. Optional: only if `output_attentions=True`
VictorSanh's avatar
wip  
VictorSanh committed
154
155
156
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
157
158
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()
VictorSanh's avatar
wip  
VictorSanh committed
159

160
        dim_per_head = self.dim // self.n_heads
VictorSanh's avatar
wip  
VictorSanh committed
161
162
163
164
165
166
167
168
169
170
171

        assert 2 <= mask.dim() <= 3
        causal = (mask.dim() == 3)
        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
172
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
VictorSanh's avatar
wip  
VictorSanh committed
173
174
175
176
177
178
179
180
181
182
183
184

        q = shape(self.q_lin(query))           # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))             # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))           # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)                     # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2,3))          # (bs, n_heads, q_length, k_length)
        mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)   # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)        # (bs, n_heads, q_length, k_length)
185
186
187
188
189

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

VictorSanh's avatar
wip  
VictorSanh committed
190
191
192
193
194
        context = torch.matmul(weights, v)     # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)             # (bs, q_length, dim)
        context = self.out_lin(context)        # (bs, q_length, dim)

        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
195
            return (context, weights)
VictorSanh's avatar
wip  
VictorSanh committed
196
        else:
VictorSanh's avatar
VictorSanh committed
197
            return (context,)
VictorSanh's avatar
wip  
VictorSanh committed
198
199

class FFN(nn.Module):
LysandreJik's avatar
LysandreJik committed
200
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
201
202
203
204
        super(FFN, self).__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
205
        assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation)
VictorSanh's avatar
VictorSanh committed
206
        self.activation = gelu if config.activation == 'gelu' else nn.ReLU()
VictorSanh's avatar
wip  
VictorSanh committed
207

LysandreJik's avatar
LysandreJik committed
208
    def forward(self, input):
VictorSanh's avatar
wip  
VictorSanh committed
209
210
211
212
213
214
215
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x

class TransformerBlock(nn.Module):
LysandreJik's avatar
LysandreJik committed
216
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
217
218
219
220
221
222
223
224
225
        super(TransformerBlock, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

VictorSanh's avatar
VictorSanh committed
226
        assert config.dim % config.n_heads == 0
VictorSanh's avatar
wip  
VictorSanh committed
227

VictorSanh's avatar
VictorSanh committed
228
        self.attention = MultiHeadSelfAttention(config)
VictorSanh's avatar
wip  
VictorSanh committed
229
230
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

VictorSanh's avatar
VictorSanh committed
231
        self.ffn = FFN(config)
VictorSanh's avatar
wip  
VictorSanh committed
232
233
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

LysandreJik's avatar
LysandreJik committed
234
    def forward(self, x, attn_mask=None, head_mask=None):
VictorSanh's avatar
wip  
VictorSanh committed
235
236
237
238
239
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
240
241
242
243
244
245
246

        Outputs
        -------
        sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            The attention weights
        ffn_output: torch.tensor(bs, seq_length, dim)
            The output of the transformer block contextualization.
VictorSanh's avatar
wip  
VictorSanh committed
247
248
        """
        # Self-Attention
249
        sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask)
VictorSanh's avatar
wip  
VictorSanh committed
250
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
251
            sa_output, sa_weights = sa_output                  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
VictorSanh's avatar
VictorSanh committed
252
253
        else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples
            assert type(sa_output) == tuple
VictorSanh's avatar
VictorSanh committed
254
            sa_output = sa_output[0]
VictorSanh's avatar
wip  
VictorSanh committed
255
256
257
258
259
260
        sa_output = self.sa_layer_norm(sa_output + x)          # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)                             # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

VictorSanh's avatar
VictorSanh committed
261
        output = (ffn_output,)
VictorSanh's avatar
wip  
VictorSanh committed
262
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
263
264
            output = (sa_weights,) + output
        return output
VictorSanh's avatar
wip  
VictorSanh committed
265

266

VictorSanh's avatar
wip  
VictorSanh committed
267
class Transformer(nn.Module):
LysandreJik's avatar
LysandreJik committed
268
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
269
270
271
        super(Transformer, self).__init__()
        self.n_layers = config.n_layers
        self.output_attentions = config.output_attentions
VictorSanh's avatar
VictorSanh committed
272
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
273

VictorSanh's avatar
VictorSanh committed
274
275
        layer = TransformerBlock(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])
VictorSanh's avatar
wip  
VictorSanh committed
276

LysandreJik's avatar
LysandreJik committed
277
    def forward(self, x, attn_mask=None, head_mask=None):
VictorSanh's avatar
wip  
VictorSanh committed
278
279
280
281
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
282
            Input sequence embedded.
VictorSanh's avatar
wip  
VictorSanh committed
283
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
284
285
286
287
288
289
290
291
292
293
294
295
            Attention mask on the sequence.

        Outputs
        -------
        hidden_state: torch.tensor(bs, seq_length, dim)
            Sequence of hiddens states in the last (top) layer
        all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
            Tuple of length n_layers with the hidden states from each layer.
            Optional: only if output_hidden_states=True
        all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
            Tuple of length n_layers with the attention weights from each layer
            Optional: only if output_attentions=True
VictorSanh's avatar
wip  
VictorSanh committed
296
        """
VictorSanh's avatar
VictorSanh committed
297
298
        all_hidden_states = ()
        all_attentions = ()
VictorSanh's avatar
wip  
VictorSanh committed
299

VictorSanh's avatar
VictorSanh committed
300
        hidden_state = x
301
302
303
304
305
306
307
308
309
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(x=hidden_state,
                                         attn_mask=attn_mask,
                                         head_mask=head_mask[i])
            hidden_state = layer_outputs[-1]

VictorSanh's avatar
wip  
VictorSanh committed
310
            if self.output_attentions:
311
312
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
VictorSanh's avatar
VictorSanh committed
313
                all_attentions = all_attentions + (attentions,)
314
315
316
317
318
            else:
                assert len(layer_outputs) == 1

        # Add last layer
        if self.output_hidden_states:
VictorSanh's avatar
VictorSanh committed
319
            all_hidden_states = all_hidden_states + (hidden_state,)
VictorSanh's avatar
wip  
VictorSanh committed
320

VictorSanh's avatar
VictorSanh committed
321
322
323
        outputs = (hidden_state,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
VictorSanh's avatar
wip  
VictorSanh committed
324
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
325
            outputs = outputs + (all_attentions,)
326
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
VictorSanh's avatar
VictorSanh committed
327
328
329


### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
thomwolf's avatar
thomwolf committed
330
class DistilBertPreTrainedModel(PreTrainedModel):
VictorSanh's avatar
VictorSanh committed
331
332
333
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """
thomwolf's avatar
thomwolf committed
334
335
    config_class = DistilBertConfig
    pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
VictorSanh's avatar
VictorSanh committed
336
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
337
    base_model_prefix = "distilbert"
VictorSanh's avatar
VictorSanh committed
338
339

    def __init__(self, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
340
        super(DistilBertPreTrainedModel, self).__init__(*inputs, **kwargs)
VictorSanh's avatar
VictorSanh committed
341
    
342
    def _init_weights(self, module):
VictorSanh's avatar
VictorSanh committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        """ Initialize the weights.
        """
        if isinstance(module, nn.Embedding):
            if module.weight.requires_grad:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
357
358
DISTILBERT_START_DOCSTRING = r"""
    DistilBERT is a small, fast, cheap and light Transformer model
359
360
361
362
    trained by distilling Bert base. It has 40% less parameters than
    `bert-base-uncased`, runs 60% faster while preserving over 95% of
    Bert's performances as measured on the GLUE language understanding benchmark.

thomwolf's avatar
thomwolf committed
363
    Here are the differences between the interface of Bert and DistilBert:
364

LysandreJik's avatar
LysandreJik committed
365
    - DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
thomwolf's avatar
thomwolf committed
366
    - DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
VictorSanh's avatar
VictorSanh committed
367

thomwolf's avatar
thomwolf committed
368
    For more information on DistilBERT, please refer to our
369
370
371
    `detailed blog post`_
    
    .. _`detailed blog post`:
LysandreJik's avatar
LysandreJik committed
372
        https://medium.com/huggingface/distilbert-8cf3380435b5
VictorSanh's avatar
VictorSanh committed
373
374

    Parameters:
thomwolf's avatar
thomwolf committed
375
        config (:class:`~pytorch_transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. 
VictorSanh's avatar
VictorSanh committed
376
377
378
379
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

thomwolf's avatar
thomwolf committed
380
DISTILBERT_INPUTS_DOCSTRING = r"""
VictorSanh's avatar
VictorSanh committed
381
    Inputs:
LysandreJik's avatar
LysandreJik committed
382
383
384
        **input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
VictorSanh's avatar
VictorSanh committed
385
            
thomwolf's avatar
thomwolf committed
386
            For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
VictorSanh's avatar
VictorSanh committed
387
388
389
390
        **attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
391
392
393
394
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
VictorSanh's avatar
VictorSanh committed
395
396
"""

Julien Chaumond's avatar
Julien Chaumond committed
397
@add_start_docstrings("The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
398
399
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertModel(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
400
    r"""
401
402
403
404
405
406
407
408
409
410
411
412
413
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
414
415
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertModel.from_pretrained('distilbert-base-uncased')
416
417
418
419
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

VictorSanh's avatar
VictorSanh committed
420
421
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
422
        super(DistilBertModel, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
423
424
425
426

        self.embeddings = Embeddings(config)   # Embeddings
        self.transformer = Transformer(config) # Encoder

427
        self.init_weights()
VictorSanh's avatar
VictorSanh committed
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.transformer.layer[layer].attention.prune_heads(heads)

VictorSanh's avatar
VictorSanh committed
443
    def forward(self,
LysandreJik's avatar
LysandreJik committed
444
                input_ids, attention_mask=None, head_mask=None):
VictorSanh's avatar
VictorSanh committed
445
446
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids) # (bs, seq_length)
VictorSanh's avatar
wip  
VictorSanh committed
447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

VictorSanh's avatar
VictorSanh committed
463
464
        embedding_output = self.embeddings(input_ids)   # (bs, seq_length, dim)
        tfmr_output = self.transformer(x=embedding_output,
465
466
                                       attn_mask=attention_mask,
                                       head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
467
        hidden_state = tfmr_output[0]
468
469
470
        output = (hidden_state, ) + tfmr_output[1:]

        return output # last-layer hidden-state, (all hidden_states), (all attentions)
VictorSanh's avatar
wip  
VictorSanh committed
471
472


thomwolf's avatar
thomwolf committed
473
474
475
@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """,
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
476
    r"""
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
498
499
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
500
501
502
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
VictorSanh's avatar
VictorSanh committed
503
504

    """
VictorSanh's avatar
VictorSanh committed
505
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
506
        super(DistilBertForMaskedLM, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
507
508
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
509

thomwolf's avatar
thomwolf committed
510
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
511
512
513
514
        self.vocab_transform = nn.Linear(config.dim, config.dim)
        self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
        self.vocab_projector = nn.Linear(config.dim, config.vocab_size)

515
        self.init_weights()
VictorSanh's avatar
VictorSanh committed
516
        self.tie_weights()
VictorSanh's avatar
VictorSanh committed
517
518
519

        self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)

VictorSanh's avatar
VictorSanh committed
520
    def tie_weights(self):
521
522
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
VictorSanh's avatar
VictorSanh committed
523
        """
524
        self._tie_or_clone_weights(self.vocab_projector,
thomwolf's avatar
thomwolf committed
525
                                   self.distilbert.embeddings.word_embeddings)
VictorSanh's avatar
VictorSanh committed
526

527
    def forward(self, input_ids, attention_mask=None, head_mask=None, masked_lm_labels=None):
thomwolf's avatar
thomwolf committed
528
        dlbrt_output = self.distilbert(input_ids=input_ids,
529
530
                                       attention_mask=attention_mask,
                                       head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
531
        hidden_states = dlbrt_output[0]                              # (bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
532
533
534
535
536
        prediction_logits = self.vocab_transform(hidden_states)      # (bs, seq_length, dim)
        prediction_logits = gelu(prediction_logits)                  # (bs, seq_length, dim)
        prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
        prediction_logits = self.vocab_projector(prediction_logits)  # (bs, seq_length, vocab_size)

537
        outputs = (prediction_logits, ) + dlbrt_output[1:]
VictorSanh's avatar
VictorSanh committed
538
539
540
541
542
        if masked_lm_labels is not None:
            mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)),
                                         masked_lm_labels.view(-1))
            outputs = (mlm_loss,) + outputs     

543
544
        return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions)

VictorSanh's avatar
VictorSanh committed
545

thomwolf's avatar
thomwolf committed
546
@add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of
VictorSanh's avatar
VictorSanh committed
547
                         the pooled output) e.g. for GLUE tasks. """,
thomwolf's avatar
thomwolf committed
548
549
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
550
    r"""
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
572
573
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
574
575
576
577
578
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

VictorSanh's avatar
VictorSanh committed
579
580
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
581
        super(DistilBertForSequenceClassification, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
582
583
        self.num_labels = config.num_labels

thomwolf's avatar
thomwolf committed
584
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
585
586
587
588
        self.pre_classifier = nn.Linear(config.dim, config.dim)
        self.classifier = nn.Linear(config.dim, config.num_labels)
        self.dropout = nn.Dropout(config.seq_classif_dropout)

589
        self.init_weights()
VictorSanh's avatar
VictorSanh committed
590

591
    def forward(self, input_ids,  attention_mask=None, head_mask=None, labels=None):
thomwolf's avatar
thomwolf committed
592
        distilbert_output = self.distilbert(input_ids=input_ids,
593
594
                                            attention_mask=attention_mask,
                                            head_mask=head_mask)
thomwolf's avatar
thomwolf committed
595
        hidden_state = distilbert_output[0]                    # (bs, seq_len, dim)
596
        pooled_output = hidden_state[:, 0]                    # (bs, dim)
VictorSanh's avatar
VictorSanh committed
597
598
599
600
601
        pooled_output = self.pre_classifier(pooled_output)   # (bs, dim)
        pooled_output = nn.ReLU()(pooled_output)             # (bs, dim)
        pooled_output = self.dropout(pooled_output)         # (bs, dim)
        logits = self.classifier(pooled_output)              # (bs, dim)

thomwolf's avatar
thomwolf committed
602
        outputs = (logits,) + distilbert_output[1:]
VictorSanh's avatar
VictorSanh committed
603
604
605
606
607
608
609
610
611
612
613
        if labels is not None:
            if self.num_labels == 1:
                loss_fct = nn.MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)

614

thomwolf's avatar
thomwolf committed
615
@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
VictorSanh's avatar
VictorSanh committed
616
                         the hidden-states output to compute `span start logits` and `span end logits`). """,
thomwolf's avatar
thomwolf committed
617
618
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
619
    r"""
620
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
621
622
623
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
624
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
625
626
627
628
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
646
647
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
648
649
650
651
652
653
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]

VictorSanh's avatar
VictorSanh committed
654
655
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
656
        super(DistilBertForQuestionAnswering, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
657

thomwolf's avatar
thomwolf committed
658
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
659
660
661
662
        self.qa_outputs = nn.Linear(config.dim, config.num_labels)
        assert config.num_labels == 2
        self.dropout = nn.Dropout(config.qa_dropout)

663
        self.init_weights()
VictorSanh's avatar
VictorSanh committed
664
        
665
    def forward(self, input_ids, attention_mask=None, head_mask=None, start_positions=None, end_positions=None):
thomwolf's avatar
thomwolf committed
666
        distilbert_output = self.distilbert(input_ids=input_ids,
667
668
                                            attention_mask=attention_mask,
                                            head_mask=head_mask)
thomwolf's avatar
thomwolf committed
669
        hidden_states = distilbert_output[0]                                 # (bs, max_query_len, dim)
VictorSanh's avatar
VictorSanh committed
670

VictorSanh's avatar
wip  
VictorSanh committed
671
672
673
674
675
676
        hidden_states = self.dropout(hidden_states)                       # (bs, max_query_len, dim)
        logits = self.qa_outputs(hidden_states)                           # (bs, max_query_len, 2)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)                           # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1)                               # (bs, max_query_len)

thomwolf's avatar
thomwolf committed
677
        outputs = (start_logits, end_logits,) + distilbert_output[1:]
VictorSanh's avatar
wip  
VictorSanh committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

VictorSanh's avatar
VictorSanh committed
695
        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)