serialization.mdx 25.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

13
# Export 馃 Transformers Models
Sylvain Gugger's avatar
Sylvain Gugger committed
14

lewtun's avatar
lewtun committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we
recommend exporting them to a serialized format that can be loaded and executed
on specialized runtimes and hardware. In this guide, we'll show you how to
export 馃 Transformers models in two widely used formats: ONNX and TorchScript.
Sylvain Gugger's avatar
Sylvain Gugger committed
19

lewtun's avatar
lewtun committed
20
21
22
23
Once exported, a model can optimized for inference via techniques such as
quantization and pruning. If you are interested in optimizing your models to run
with maximum efficiency, check out the [馃 Optimum
library](https://github.com/huggingface/optimum).
Sylvain Gugger's avatar
Sylvain Gugger committed
24

lewtun's avatar
lewtun committed
25
## ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
26

lewtun's avatar
lewtun committed
27
28
29
30
31
32
33
The [ONNX (Open Neural Network eXchange)](http://onnx.ai) project is an open
standard that defines a common set of operators and a common file format to
represent deep learning models in a wide variety of frameworks, including
PyTorch and TensorFlow. When a model is exported to the ONNX format, these
operators are used to construct a computational graph (often called an
_intermediate representation_) which represents the flow of data through the
neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

lewtun's avatar
lewtun committed
35
36
37
By exposing a graph with standardized operators and data types, ONNX makes it
easy to switch between frameworks. For example, a model trained in PyTorch can
be exported to ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
38

lewtun's avatar
lewtun committed
39
40
41
42
馃 Transformers provides a `transformers.onnx` package that enables you to
convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures,
and are designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
43

lewtun's avatar
lewtun committed
44
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
45

46
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
49
50

- ALBERT
- BART
- BERT
51
52
- Blenderbot
- BlenderbotSmall
Sylvain Gugger's avatar
Sylvain Gugger committed
53
- CamemBERT
54
- Data2VecText
Sylvain Gugger's avatar
Sylvain Gugger committed
55
- DistilBERT
56
- ELECTRA
57
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
58
- GPT Neo
59
- GPT-J
60
- I-BERT
Sylvain Gugger's avatar
Sylvain Gugger committed
61
- LayoutLM
62
- M2M100
63
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
64
65
- mBART
- OpenAI GPT-2
Gunjan Chhablani's avatar
Gunjan Chhablani committed
66
- PLBart
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
- RoBERTa
- T5
lewtun's avatar
lewtun committed
69
- ViT
Sylvain Gugger's avatar
Sylvain Gugger committed
70
- XLM-RoBERTa
71
- XLM-RoBERTa-XL
Sylvain Gugger's avatar
Sylvain Gugger committed
72

lewtun's avatar
lewtun committed
73
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
74

lewtun's avatar
lewtun committed
75
76
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
77

lewtun's avatar
lewtun committed
78
### Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
79

lewtun's avatar
lewtun committed
80
81
To export a 馃 Transformers model to ONNX, you'll first need to install some
extra dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
82

lewtun's avatar
lewtun committed
83
84
85
86
87
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
92
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95
96
97
98
99

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
100
101
102
103
104
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
  --atol ATOL           Absolute difference tolerence when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
109
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
110
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
```

lewtun's avatar
lewtun committed
113
which should show the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116

```bash
Validating ONNX model...
117
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
118
119
120
121
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
```

lewtun's avatar
lewtun committed
124
This exports an ONNX graph of the checkpoint defined by the `--model` argument.
125
126
In this example it is `distilbert-base-uncased`, but it can be any checkpoint on
the Hugging Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
127

lewtun's avatar
lewtun committed
128
129
130
131
The resulting `model.onnx` file can then be run on one of the [many
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the
ONNX standard. For example, we can load and run the model with [ONNX
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
132

lewtun's avatar
lewtun committed
133
134
135
136
137
138
139
140
141
142
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
143

lewtun's avatar
lewtun committed
144
145
146
The required output names (i.e. `["last_hidden_state"]`) can be obtained by
taking a look at the ONNX configuration of each model. For example, for
DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
147

lewtun's avatar
lewtun committed
148
149
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
150

lewtun's avatar
lewtun committed
151
152
153
154
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
```

157
158
159
160
161
162
163
164
165
166
167
168
The process is identical for TensorFlow checkpoints on the Hub. For example, we
can export a pure TensorFlow checkpoint from the [Keras
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

To export a model that's stored locally, you'll need to have the model's weights
and tokenizer files stored in a directory. For example, we can load and save a
checkpoint as follows:

Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
<frameworkcontent>
<pt>
171
172
173
174
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
175
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
176
177
178
179
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
182
183
184
185
186
187
188
189
190
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
</pt>
<tf>
```python
191
192
193
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
194
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
195
196
197
198
199
200
201
202
203
204
205
206
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
</tf>
</frameworkcontent>
209

lewtun's avatar
lewtun committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
### Selecting features for different model topologies

Each ready-made configuration comes with a set of _features_ that enable you to
export models for different types of topologies or tasks. As shown in the table
below, each feature is associated with a different auto class:

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
`FeaturesManager`. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229

```python
lewtun's avatar
lewtun committed
230
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
231

lewtun's avatar
lewtun committed
232
233
234
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
```

lewtun's avatar
lewtun committed
237
238
239
You can then pass one of these features to the `--feature` argument in the
`transformers.onnx` package. For example, to export a text-classification model
we can pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
240

lewtun's avatar
lewtun committed
241
242
243
244
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
245

lewtun's avatar
lewtun committed
246
247
248
249
which will display the following logs:

```bash
Validating ONNX model...
250
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
251
252
253
254
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
```

lewtun's avatar
lewtun committed
257
258
259
260
261
262
263
264
265
266
267
268
Notice that in this case, the output names from the fine-tuned model are
`logits` instead of the `last_hidden_state` we saw with the
`distilbert-base-uncased` checkpoint earlier. This is expected since the
fine-tuned model has a sequence classification head.

<Tip>

The features that have a `with-past` suffix (e.g. `causal-lm-with-past`)
correspond to model topologies with precomputed hidden states (key and values
in the attention blocks) that can be used for fast autoregressive decoding.

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
269
270


lewtun's avatar
lewtun committed
271
### Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
272

lewtun's avatar
lewtun committed
273
274
If you wish to export a model whose architecture is not natively supported by
the library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
275

lewtun's avatar
lewtun committed
276
277
278
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
279

lewtun's avatar
lewtun committed
280
281
In this section, we'll look at how DistilBERT was implemented to show what's
involved with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
282

lewtun's avatar
lewtun committed
283
#### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
284

lewtun's avatar
lewtun committed
285
286
287
Let's start with the ONNX configuration object. We provide three abstract
classes that you should inherit from, depending on the type of model
architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
288

289
290
291
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
292
293
294

<Tip>

lewtun's avatar
lewtun committed
295
296
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
297
298
299

</Tip>

lewtun's avatar
lewtun committed
300
301
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
302

lewtun's avatar
lewtun committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
```

lewtun's avatar
lewtun committed
319
320
321
322
323
324
Every configuration object must implement the `inputs` property and return a
mapping, where each key corresponds to an expected input, and each value
indicates the axis of that input. For DistilBERT, we can see that two inputs are
required: `input_ids` and `attention_mask`. These inputs have the same shape of
`(batch_size, sequence_length)` which is why we see the same axes used in the
configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326
327

<Tip>

lewtun's avatar
lewtun committed
328
329
330
331
332
Notice that `inputs` property for `DistilBertOnnxConfig` returns an
`OrderedDict`. This ensures that the inputs are matched with their relative
position within the `PreTrainedModel.forward()` method when tracing the graph.
We recommend using an `OrderedDict` for the `inputs` and `outputs` properties
when implementing custom ONNX configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
333
334
335

</Tip>

lewtun's avatar
lewtun committed
336
337
Once you have implemented an ONNX configuration, you can instantiate it by
providing the base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
338

lewtun's avatar
lewtun committed
339
340
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
341

lewtun's avatar
lewtun committed
342
343
344
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
345

lewtun's avatar
lewtun committed
346
347
The resulting object has several useful properties. For example you can view the
ONNX operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
348

lewtun's avatar
lewtun committed
349
350
351
352
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
353

lewtun's avatar
lewtun committed
354
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
355

lewtun's avatar
lewtun committed
356
357
358
359
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
360

lewtun's avatar
lewtun committed
361
362
363
364
365
366
367
368
369
Notice that the outputs property follows the same structure as the inputs; it
returns an `OrderedDict` of named outputs and their shapes. The output structure
is linked to the choice of feature that the configuration is initialised with.
By default, the ONNX configuration is initialized with the `default` feature
that corresponds to exporting a model loaded with the `AutoModel` class. If you
want to export a different model topology, just provide a different feature to
the `task` argument when you initialize the ONNX configuration. For example, if
we wished to export DistilBERT with a sequence classification head, we could
use:
Sylvain Gugger's avatar
Sylvain Gugger committed
370

lewtun's avatar
lewtun committed
371
372
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
373

lewtun's avatar
lewtun committed
374
375
376
377
378
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
381

<Tip>

382
383
384
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and the
other configuration classes can be overriden if needed. Check out
[`BartOnnxConfig`] for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
385
386
387

</Tip>

lewtun's avatar
lewtun committed
388
#### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
389

lewtun's avatar
lewtun committed
390
391
392
393
Once you have implemented the ONNX configuration, the next step is to export the
model. Here we can use the `export()` function provided by the
`transformers.onnx` package. This function expects the ONNX configuration, along
with the base model and tokenizer, and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
394

lewtun's avatar
lewtun committed
395
396
397
398
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
399

lewtun's avatar
lewtun committed
400
401
402
403
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
404

lewtun's avatar
lewtun committed
405
406
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
407

lewtun's avatar
lewtun committed
408
409
410
411
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are
lists of the keys defined in the `inputs` and `outputs` properties of the
configuration. Once the model is exported, you can test that the model is well
formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
412

lewtun's avatar
lewtun committed
413
414
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
415

lewtun's avatar
lewtun committed
416
417
418
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
419
420
421

<Tip>

lewtun's avatar
lewtun committed
422
423
424
425
426
427
If your model is larger than 2GB, you will see that many additional files are
created during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and
these have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md)
for instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
428
429
430

</Tip>

lewtun's avatar
lewtun committed
431
#### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
432

lewtun's avatar
lewtun committed
433
434
435
436
The final step is to validate that the outputs from the base and exported model
agree within some absolute tolerance. Here we can use the
`validate_model_outputs()` function provided by the `transformers.onnx` package
as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
437

lewtun's avatar
lewtun committed
438
439
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
440

lewtun's avatar
lewtun committed
441
442
443
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
```

lewtun's avatar
lewtun committed
446
447
448
449
This function uses the `OnnxConfig.generate_dummy_inputs()` method to generate
inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6
to 1e-4 range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
450

lewtun's avatar
lewtun committed
451
### Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
452

lewtun's avatar
lewtun committed
453
454
455
We are looking to expand the set of ready-made configurations and welcome
contributions from the community! If you would like to contribute your addition
to the library, you will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
456

lewtun's avatar
lewtun committed
457
458
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
459
460
* Include the model architecture and corresponding features in [`~onnx.features.FeatureManager`]
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
461

lewtun's avatar
lewtun committed
462
463
464
Check out how the configuration for [IBERT was
contributed](https://github.com/huggingface/transformers/pull/14868/files) to
get an idea of what's involved.
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

## TorchScript

<Tip>

This is the very beginning of our experiments with TorchScript and we are still exploring its capabilities with
variable-input-size models. It is a focus of interest to us and we will deepen our analysis in upcoming releases,
with more code examples, a more flexible implementation, and benchmarks comparing python-based codes with compiled
TorchScript.

</Tip>

According to Pytorch's documentation: "TorchScript is a way to create serializable and optimizable models from PyTorch
code". Pytorch's two modules [JIT and TRACE](https://pytorch.org/docs/stable/jit.html) allow the developer to export
their model to be re-used in other programs, such as efficiency-oriented C++ programs.

We have provided an interface that allows the export of 馃 Transformers models to TorchScript so that they can be reused
in a different environment than a Pytorch-based python program. Here we explain how to export and use our models using
TorchScript.

Exporting a model requires two things:

- a forward pass with dummy inputs.
- model instantiation with the `torchscript` flag.

These necessities imply several things developers should be careful about. These are detailed below.


### Implications

### TorchScript flag and tied weights

This flag is necessary because most of the language models in this repository have tied weights between their
`Embedding` layer and their `Decoding` layer. TorchScript does not allow the export of models that have tied
weights, therefore it is necessary to untie and clone the weights beforehand.

This implies that models instantiated with the `torchscript` flag have their `Embedding` layer and `Decoding`
layer separate, which means that they should not be trained down the line. Training would de-synchronize the two
layers, leading to unexpected results.

This is not the case for models that do not have a Language Model head, as those do not have tied weights. These models
can be safely exported without the `torchscript` flag.

### Dummy inputs and standard lengths

The dummy inputs are used to do a model forward pass. While the inputs' values are propagating through the layers,
Pytorch keeps track of the different operations executed on each tensor. These recorded operations are then used to
create the "trace" of the model.

The trace is created relatively to the inputs' dimensions. It is therefore constrained by the dimensions of the dummy
input, and will not work for any other sequence length or batch size. When trying with a different size, an error such
as:

`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`

will be raised. It is therefore recommended to trace the model with a dummy input size at least as large as the largest
input that will be fed to the model during inference. Padding can be performed to fill the missing values. As the model
will have been traced with a large input size however, the dimensions of the different matrix will be large as well,
resulting in more calculations.

It is recommended to be careful of the total number of operations done on each input and to follow performance closely
when exporting varying sequence-length models.

### Using TorchScript in Python

Below is an example, showing how to save, load models as well as how to use the trace for inference.

#### Saving a model

This snippet shows how to use TorchScript to export a `BertModel`. Here the `BertModel` is instantiated according
to a `BertConfig` class and then saved to disk under the filename `traced_bert.pt`

```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch

enc = BertTokenizer.from_pretrained("bert-base-uncased")

# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)

# Masking one of the input tokens
masked_index = 8
Sylvain Gugger's avatar
Sylvain Gugger committed
549
tokenized_text[masked_index] = "[MASK]"
Sylvain Gugger's avatar
Sylvain Gugger committed
550
551
552
553
554
555
556
557
558
559
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]

# Initializing the model with the torchscript flag
# Flag set to True even though it is not necessary as this model does not have an LM Head.
Sylvain Gugger's avatar
Sylvain Gugger committed
560
561
562
563
564
565
566
567
config = BertConfig(
    vocab_size_or_config_json_file=32000,
    hidden_size=768,
    num_hidden_layers=12,
    num_attention_heads=12,
    intermediate_size=3072,
    torchscript=True,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

# Instantiating the model
model = BertModel(config)

# The model needs to be in evaluation mode
model.eval()

# If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag
model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)

# Creating the trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```

#### Loading a model

This snippet shows how to load the `BertModel` that was previously saved to disk under the name `traced_bert.pt`.
We are re-using the previously initialised `dummy_input`.

```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()

all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```

#### Using a traced model for inference

Using the traced model for inference is as simple as using its `__call__` dunder method:

```python
traced_model(tokens_tensor, segments_tensors)
```
602
603
604

### Deploying HuggingFace TorchScript models on AWS using the Neuron SDK

605
606
607
608
609
610
AWS introduced the [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/)
instance family for low cost, high performance machine learning inference in the cloud.
The Inf1 instances are powered by the AWS Inferentia chip, a custom-built hardware accelerator,
specializing in deep learning inferencing workloads.
[AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#)
is the SDK for Inferentia that supports tracing and optimizing transformers models for
611
612
613
614
615
616
617
618
619
620
deployment on Inf1. The Neuron SDK provides:


1. Easy-to-use API with one line of code change to trace and optimize a TorchScript model for inference in the cloud.
2. Out of the box performance optimizations for [improved cost-performance](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>)
3. Support for HuggingFace transformers models built with either [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html)
   or [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html).

#### Implications

621
622
623
Transformers Models based on the [BERT (Bidirectional Encoder Representations from Transformers)](https://huggingface.co/docs/transformers/main/model_doc/bert)
architecture, or its variants such as [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert)
 and [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta)
624
 will run best on Inf1 for non-generative tasks such as Extractive Question Answering,
625
 Sequence Classification, Token Classification. Alternatively, text generation
626
627
tasks can be adapted to run on Inf1, according to this [AWS Neuron MarianMT tutorial](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html).
More information about models that can be converted out of the box on Inferentia can be
628
629
630
631
632
633
634
635
636
637
638
found in the [Model Architecture Fit section of the Neuron documentation](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia).

#### Dependencies

Using AWS Neuron to convert models requires the following dependencies and environment:

* A [Neuron SDK environment](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide),
  which comes pre-configured on [AWS Deep Learning AMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html).

#### Converting a Model for AWS Neuron

639
Using the same script as in [Using TorchScript in Python](https://huggingface.co/docs/transformers/main/en/serialization#using-torchscript-in-python)
640
to trace a "BertModel", you import `torch.neuron` framework extension to access
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
the components of the Neuron SDK through a Python API.

```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
And only modify the tracing line of code

from:

```python
torch.jit.trace(model, [tokens_tensor, segments_tensors])
```

to:

```python
torch.neuron.trace(model, [token_tensor, segments_tensors])
```

This change enables Neuron SDK to trace the model and optimize it to run in Inf1 instances.

664
To learn more about AWS Neuron SDK features, tools, example tutorials and latest updates,
665
please see the [AWS NeuronSDK documentation](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).