test_modeling_xlnet.py 28.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
import random
17
import unittest
thomwolf's avatar
thomwolf committed
18

19
from transformers import XLNetConfig, is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
30
    import torch

31
    from transformers import (
32
        XLNetForMultipleChoice,
33
        XLNetForQuestionAnswering,
34
        XLNetForQuestionAnsweringSimple,
35
36
37
38
        XLNetForSequenceClassification,
        XLNetForTokenClassification,
        XLNetLMHeadModel,
        XLNetModel,
39
    )
thomwolf's avatar
thomwolf committed
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class XLNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        mem_len=10,
        clamp_len=-1,
        reuse_len=15,
        is_training=True,
        use_labels=True,
        vocab_size=99,
        cutoffs=[10, 50, 80],
        hidden_size=32,
        num_attention_heads=4,
        d_inner=128,
58
        num_hidden_layers=2,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        type_sequence_label_size=2,
        untie_r=True,
        bi_data=False,
        same_length=False,
        initializer_range=0.05,
        seed=1,
        type_vocab_size=2,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=5,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
        self.num_choices = 4

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
102
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
103
104
105

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = torch.zeros(
Lysandre's avatar
Lysandre committed
106
107
108
109
110
            self.batch_size,
            self.seq_length + 1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
111
112
        )
        perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
Lysandre's avatar
Lysandre committed
113
114
115
116
117
118
119
        target_mapping = torch.zeros(
            self.batch_size,
            1,
            self.seq_length + 1,
            dtype=torch.float,
            device=torch_device,
        )
120
121
122
123
124
125
126
127
128
129
130
131
        target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        token_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        config = self.get_config()

        return (
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
        )

    def get_config(self):
        return XLNetConfig(
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
167
        )
thomwolf's avatar
thomwolf committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def set_seed(self):
        random.seed(self.seed)
        torch.manual_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
        result = model(input_ids_1, input_mask=input_mask)
        result = model(input_ids_1, attention_mask=input_mask)
        result = model(input_ids_1, token_type_ids=segment_ids)
        result = model(input_ids_1)
196
197
198
199
200

        config.mem_len = 0
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()
Teven's avatar
Teven committed
201
202
        base_model_output = model(input_ids_1)
        self.parent.assertEqual(len(base_model_output), 2)
203

Stas Bekman's avatar
Stas Bekman committed
204
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
205
        self.parent.assertListEqual(
206
207
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
208
        )
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def create_and_check_use_mems_train(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.train()

        train_size = input_ids_1.shape[0]

        batch_size = 4
        for i in range(train_size // batch_size + 1):
            input_ids = input_ids_1[i : (i + 1) * batch_size]
            labels = sequence_labels[i : (i + 1) * batch_size]
            outputs = model(input_ids=input_ids, labels=labels, return_dict=True)
            self.parent.assertIsNone(outputs.mems)
            self.parent.assertIsNotNone(outputs.loss)

    def create_and_check_xlnet_model_use_mems(
Teven's avatar
Teven committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        causal_mask = torch.ones(
Lysandre's avatar
Lysandre committed
260
261
262
263
264
            input_ids_1.shape[0],
            input_ids_1.shape[1],
            input_ids_1.shape[1],
            dtype=torch.float,
            device=torch_device,
Teven's avatar
Teven committed
265
266
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
267
268
        outputs_cache = model(input_ids_1, use_mems=True, perm_mask=causal_mask)
        outputs_no_cache = model(input_ids_1, use_mems=False, perm_mask=causal_mask)
Teven's avatar
Teven committed
269
270
271
272
273
        outputs_conf = model(input_ids_1)

        self.parent.assertTrue(len(outputs_cache) == len(outputs_conf))
        self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
274
        output, mems = outputs_cache.to_tuple()
Teven's avatar
Teven committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1)

        # causal mask
        causal_mask = torch.ones(
            input_ids_1.shape[0],
            input_ids_1.shape[1] + 1,
            input_ids_1.shape[1] + 1,
            dtype=torch.float,
            device=torch_device,
        )
        causal_mask = torch.triu(causal_mask, diagonal=0)
        single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device)

        # second forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
294
295
        output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"]
Teven's avatar
Teven committed
296
297
298
299
300
301
302
303
304

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    def create_and_check_xlnet_base_model_with_att_output(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
324
        attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"]
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

        self.parent.assertEqual(len(attentions), config.n_layer)
        self.parent.assertIsInstance(attentions[0], tuple)
        self.parent.assertEqual(len(attentions[0]), 2)
        self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)

    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
350
        result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
351

352
        result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems)
353

Sylvain Gugger's avatar
Sylvain Gugger committed
354
        _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
355

Stas Bekman's avatar
Stas Bekman committed
356
357
        self.parent.assertEqual(result1.loss.shape, ())
        self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
358
        self.parent.assertListEqual(
359
360
            [mem.shape for mem in result1.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
361
        )
362

Stas Bekman's avatar
Stas Bekman committed
363
364
        self.parent.assertEqual(result2.loss.shape, ())
        self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
365
        self.parent.assertListEqual(
366
367
            [mem.shape for mem in result2.mems],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        )

    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
389
        result = model(input_ids_1)
390

Sylvain Gugger's avatar
Sylvain Gugger committed
391
        result_with_labels = model(
392
            input_ids_1,
393
394
395
396
397
398
399
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
400
        result_with_labels = model(
401
            input_ids_1,
402
403
404
405
406
407
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )

Sylvain Gugger's avatar
Sylvain Gugger committed
408
        total_loss, mems = result_with_labels.to_tuple()
409

Lysandre's avatar
Lysandre committed
410
411
412
413
414
        result_with_labels = model(
            input_ids_1,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
415

Sylvain Gugger's avatar
Sylvain Gugger committed
416
        total_loss, mems = result_with_labels.to_tuple()
417

Stas Bekman's avatar
Stas Bekman committed
418
419
420
421
422
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
423
        )
Stas Bekman's avatar
Stas Bekman committed
424
425
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
426
        )
Stas Bekman's avatar
Stas Bekman committed
427
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
428
        self.parent.assertListEqual(
429
430
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        )

    def create_and_check_xlnet_token_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
        result = model(input_ids_1)
        result = model(input_ids_1, labels=token_labels)
454

Stas Bekman's avatar
Stas Bekman committed
455
456
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size))
457
        self.parent.assertListEqual(
458
459
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        )

    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
        token_labels,
    ):
        model = XLNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
481
482
        result = model(input_ids_1)
        result = model(input_ids_1, labels=sequence_labels)
483

Stas Bekman's avatar
Stas Bekman committed
484
485
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
486
        self.parent.assertListEqual(
487
488
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
489
490
491
492
493
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
494
495
496
497
498
499
500
501
502
503
504
505
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
            token_labels,
506
507
508
509
510
511
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


@require_torch
512
class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
513
514
515
516
517
518
519
    all_model_classes = (
        (
            XLNetModel,
            XLNetLMHeadModel,
            XLNetForTokenClassification,
            XLNetForSequenceClassification,
            XLNetForQuestionAnswering,
520
            XLNetForQuestionAnsweringSimple,
521
522
523
524
525
526
527
528
            XLNetForMultipleChoice,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLNetLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
529
530
531
532
533
534
535
536
537
538
539
540
    pipeline_model_mapping = (
        {
            "feature-extraction": XLNetModel,
            "question-answering": XLNetForQuestionAnsweringSimple,
            "text-classification": XLNetForSequenceClassification,
            "text-generation": XLNetLMHeadModel,
            "token-classification": XLNetForTokenClassification,
            "zero-shot": XLNetForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
541
    fx_compatible = False
542
    test_pruning = False
thomwolf's avatar
thomwolf committed
543

544
545
546
547
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
548
549
550
551
        if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
            return True

        return False
552

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    # XLNet has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLNetForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
568
    def setUp(self):
569
        self.model_tester = XLNetModelTester(self)
thomwolf's avatar
thomwolf committed
570
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
thomwolf's avatar
thomwolf committed
571

thomwolf's avatar
thomwolf committed
572
    def test_config(self):
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

580
    def test_xlnet_base_model_use_mems(self):
Stas Bekman's avatar
Stas Bekman committed
581
        # checking that in auto-regressive mode, `use_mems` gives the same results
Teven's avatar
Teven committed
582
583
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
584
585
586
587
588
        self.model_tester.create_and_check_xlnet_model_use_mems(*config_and_inputs)

    def test_seq_classification_use_mems_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_use_mems_train(*config_and_inputs)
Teven's avatar
Teven committed
589

590
591
592
593
594
    def test_xlnet_base_model_with_att_output(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs)

thomwolf's avatar
thomwolf committed
595
596
597
    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
598
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
599
600
601
602
603
604

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

605
606
607
608
609
    def test_xlnet_token_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs)

thomwolf's avatar
thomwolf committed
610
611
612
613
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
614

615
616
617
618
    def test_retain_grad_hidden_states_attentions(self):
        # xlnet cannot keep gradients in attentions or hidden states
        return

619
620
621
622
623
624
625
626
627
628
629
630
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

        for param in ["q", "k", "v", "o", "r", "r_r_bias", "r_s_bias", "r_w_bias", "seg_embed", "mask_emb"]:
            if hasattr(module, param) and getattr(module, param) is not None:
                weight = getattr(module, param)
                weight.data.fill_(3)

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            # check hidden size
            for i, layer_hidden_states in enumerate(iter_hidden_states):
                # every 2nd tensor is from extra stream
                if i % 2 != 0:
                    seq_len = 1
                else:
                    # for first item dummy PAD token is appended so need one more
649
650
                    # else offset+dummy_token when using cache
                    seq_len = (min_length + 1) if idx == 0 else 3
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

                expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
                self.assertEqual(layer_hidden_states.shape, expected_shape)

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, attentions_item in enumerate(attentions):
            for iter_attentions in attentions_item:
                tgt_len = min_length

                # for first item dummy PAD token is appended so need one more
669
                # every token after consists of offset+dummy_token length when using cache
670
671
                if idx == 0:
                    tgt_len += 1
672
673
                else:
                    tgt_len = 3
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

                src_len = min_length + idx + 1

                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    tgt_len,
                    src_len,
                )
                # check attn size
                self.assertListEqual(
                    [layer_attention.shape for layer_attention in iter_attentions],
                    [expected_shape] * len(iter_attentions),
                )

689
    @slow
thomwolf's avatar
thomwolf committed
690
    def test_model_from_pretrained(self):
691
692
693
        model_name = "xlnet/xlnet-base-cased"
        model = XLNetModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
694
695


696
@require_torch
697
698
699
class XLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
700
        model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-base-cased")
701
        model.to(torch_device)
702
        # fmt: off
patrickvonplaten's avatar
patrickvonplaten committed
703
        input_ids = torch.tensor(
704
705
            [
                [
706
                    67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3,
707
                ]
patrickvonplaten's avatar
patrickvonplaten committed
708
709
710
711
            ],
            dtype=torch.long,
            device=torch_device,
        )
712
        # fmt: on
713
714
715
716
717
718
719
720
721
722
723
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

724
        # fmt: off
725
        expected_output_ids = [
726
            67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, 19, 12943, 4354, 153, 27, 442, 22, 2771, 4901, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771,
727
        ]
728
        # fmt: on
729
730
731
732
733
734
735
736
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
Teven's avatar
Teven committed
737
738
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
739

patrickvonplaten's avatar
patrickvonplaten committed
740
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
741
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)