modeling_openai.py 37 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .file_utils import cached_path
34
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
thomwolf's avatar
thomwolf committed
35
                          PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
36
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
41
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
45
46
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

55
56
57
58
59
60
61
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
62
    # This was used when we had a single embedding matrix for positions and tokens
63
64
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
65
66
67
    init_params = [arr.squeeze() for arr in init_params]

    try:
68
69
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
70
    except AssertionError as e:
71
72
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
73
74
        raise

75
76
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
77
    names.pop(0)
78
79
    # Pop position and token embedding arrays
    init_params.pop(0)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


127
128
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
129

130
class OpenAIGPTConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
131
132
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
133
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
134
135
136
137
138

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
139
        n_positions=512,
140
141
142
143
144
145
146
147
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
148
        layer_norm_epsilon=1e-5,
149
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
150
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
151
152
153
154
155
        summary_type='token_ids',
        summary_use_proj=True,
        summary_num_classes=1,
        summary_activation=None,
        summary_dropout=0.1,
thomwolf's avatar
thomwolf committed
156
        **kwargs
157
    ):
thomwolf's avatar
thomwolf committed
158
159
160
161
162
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
163
164
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
172
173
174
175
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
176
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
177
178
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
179
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
180
        """
thomwolf's avatar
thomwolf committed
181
182
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
183
184
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
185
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
193
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
201
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
202
            self.initializer_range = initializer_range
203
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
204
205
206
207
208
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_num_classes = summary_num_classes
            self.summary_activation = summary_activation
            self.summary_dropout = summary_dropout
thomwolf's avatar
thomwolf committed
209
        else:
210
211
212
213
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
214
215

    @property
216
217
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
218

thomwolf's avatar
thomwolf committed
219
220
221
222
223
224
225
226
227
228
229
230
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
231
232

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
233
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
234
235
236
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
237
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
238
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
239
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
240
241
        self.split_size = n_state
        self.scale = scale
242

thomwolf's avatar
thomwolf committed
243
        self.output_attentions = config.output_attentions
244

245
246
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
247
248
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
249

250
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
251
252
        if len(heads) == 0:
            return
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
267
268
269
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
270
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
271
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
272
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
273
274
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
275
276
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
277
278
279
280
281

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
282
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
283
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
284
285
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

300
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
301
302
303
304
305
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
306

thomwolf's avatar
thomwolf committed
307
308
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
309

thomwolf's avatar
thomwolf committed
310
311
312
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
313
314
315

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
316
317
318


class MLP(nn.Module):
319
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
320
        super(MLP, self).__init__()
321
        nx = config.n_embd
322
323
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
324
325
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
334
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
335
        super(Block, self).__init__()
336
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
337
        self.attn = Attention(nx, n_ctx, config, scale)
338
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
339
        self.mlp = MLP(4 * nx, config)
340
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
341

342
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
343
344
345
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
346
347
348
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
349
350
351

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
352
353


thomwolf's avatar
thomwolf committed
354
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
355
356
    """ Language Model Head for the transformer """

357
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
358
        super(OpenAIGPTLMHead, self).__init__()
359
        self.n_embd = config.n_embd
360
361
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
362
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
363
364
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
365
366
        self.set_embeddings_weights(model_embeddings_weights)

367
368
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
369
370
371
372
373

        if self.torchscript:
            self.decoder.weight = nn.Parameter(model_embeddings_weights.clone())
        else:
            self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
374

thomwolf's avatar
thomwolf committed
375
376
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
377
378
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
379
380
381
        return lm_logits


382
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
383
384
385
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
386
    config_class = OpenAIGPTConfig
387
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
388
389
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
390

391
392
393
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
394
395
396
    def init_weights(self, module):
        """ Initialize the weights.
        """
397
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
398
399
400
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
401
402
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
403
404
405
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
406

thomwolf's avatar
thomwolf committed
407
    @classmethod
408
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
409
410
411
412
413
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
414
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
415
416
                - a str with the name of a pre-trained model to load selected in the list of:
                - a path or url to a pretrained model archive containing:
417
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
418
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
419
                - a path or url to a pretrained model archive containing:
420
                    . `config.json` a configuration file for the model
421
422
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
423
424
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
425
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
426
        """
427
428
429
430
        num_special_tokens = kwargs.get('num_special_tokens', None)
        kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
431

thomwolf's avatar
thomwolf committed
432
        # Add additional embeddings for special tokens if needed
433
        # This step also make sure we are still sharing the output and input embeddings after loading weights
434
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
435
        return model
thomwolf's avatar
thomwolf committed
436
437


thomwolf's avatar
thomwolf committed
438
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
439
440
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

441
442
443
444
445
446
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
447
448
449
450
451
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
452
         config.vocab_size + config.n_special - 1]                  ______________________
453

454
455
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
456
457
458
    You should use the associate indices to index the embeddings.

    Params:
459
460
461
462
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
463
464
465

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
466
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
467
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
468
            with the position indices (selected in the range [0, config.n_positions - 1[.
469
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
470
471
472
473
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
474
475
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
476
477

    Outputs:
478
479
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
480
481
482
483
484
485
486
487
488
489
490
491
492
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
493

thomwolf's avatar
thomwolf committed
494
    def __init__(self, config):
495
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
496
497
498
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
499
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
500
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
501
        self.drop = nn.Dropout(config.embd_pdrop)
502
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
503

thomwolf's avatar
thomwolf committed
504
505
        self.apply(self.init_weights)

506
    def set_num_special_tokens(self, num_special_tokens=None):
507
        " Update input embeddings with new embedding matrice if needed "
508
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
509
            return
thomwolf's avatar
thomwolf committed
510
511
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
512
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
513
        old_embed = self.tokens_embed
514
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
515
        self.tokens_embed.to(old_embed.weight.device)
516
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
517
518
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
519

thomwolf's avatar
thomwolf committed
520
    def _prune_heads(self, heads_to_prune):
521
522
523
524
525
526
527
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
528
        if position_ids is None:
529
530
531
532
533
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
534
535
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

536
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
537
        # 1.0 in head_mask indicate we keep the head
538
        # attention_probs has shape bsz x n_heads x N x N
539
        # head_mask has shape n_layer x batch x n_heads x N x N
540
541
        if head_mask is not None:
            if head_mask.dim() == 1:
542
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
543
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
544
            elif head_mask.dim() == 2:
545
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
546
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
547
548
        else:
            head_mask = [None] * self.config.n_layer
549

thomwolf's avatar
thomwolf committed
550
551
552
553
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

554
555
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
556
557
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
558
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
559
560
561
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
562
563
        hidden_states = self.drop(hidden_states)

564
565
        output_shape = input_shape + (hidden_states.size(-1),)

566
567
        all_attentions = ()
        all_hidden_states = ()
568
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
569
            if self.output_hidden_states:
570
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
571

572
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
573
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
574
            if self.output_attentions:
575
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
576
577
578

        # Add last layer
        if self.output_hidden_states:
579
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
580

581
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
582
        if self.output_hidden_states:
583
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
584
        if self.output_attentions:
585
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
586
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
587

588

thomwolf's avatar
thomwolf committed
589
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
590
591
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

592
593
594
595
596
597
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
598
599
600
601
602
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
603
         config.vocab_size + config.n_special - 1]                  ______________________
604

605
606
607
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
608
609

    Params:
610
611
612
613
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
614
615
616

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
617
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
618
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
619
            with the position indices (selected in the range [0, config.n_positions - 1[.
620
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
621
622
623
624
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
625
626
627
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
628
629
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
630
631
632
633
634

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
635
636
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
637
638
639
640
641
642
643
644
645
646
647
648

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
649

thomwolf's avatar
thomwolf committed
650
    def __init__(self, config):
651
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
652
        self.transformer = OpenAIGPTModel(config)
653
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
654
655
        self.apply(self.init_weights)

656
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
657
658
659
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
660
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
661
        self.transformer.set_num_special_tokens(num_special_tokens)
662
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
663

664
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
665
666
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
667
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
668

669
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
670
        if lm_labels is not None:
671
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
672
673
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
674
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
675
            loss_fct = CrossEntropyLoss(ignore_index=-1)
676
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
677
                            shift_labels.view(-1))
678
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
679
680

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
681

682

thomwolf's avatar
thomwolf committed
683
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
684
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
685

686
687
688
689
690
691
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
692
693
694
695
696
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
697
         config.vocab_size + config.n_special - 1]                  ______________________
698

699
700
701
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
702
703

    Params:
704
705
706
707
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
708
709

    Inputs:
thomwolf's avatar
thomwolf committed
710
711
712
713
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
714
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
715
            with the position indices (selected in the range [0, config.n_positions - 1[.
716
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
717
718
719
720
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
721
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
722
723
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
724
725
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
726
727
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
728
729
730
731
732

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
733
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
734
735
736
737
738
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
739
740
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
741
742
743

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
744
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
745
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
746
747
    ```
    """
748

thomwolf's avatar
thomwolf committed
749
    def __init__(self, config):
750
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
751

thomwolf's avatar
thomwolf committed
752
        self.transformer = OpenAIGPTModel(config)
753
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
754
755
        self.multiple_choice_head = SequenceSummary(config)

thomwolf's avatar
thomwolf committed
756
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
757

758
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
759
760
761
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
762
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
763
        self.transformer.set_num_special_tokens(num_special_tokens)
764
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
765

thomwolf's avatar
thomwolf committed
766
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
767
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
768
769
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
770

thomwolf's avatar
thomwolf committed
771
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
772
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
773

774
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
775
776
777
778
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
779
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
780
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
781
782
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
783
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
784
785
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
786
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
787
788

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)