run_squad_w_distillation.py 35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" This is the exact same script as `examples/question-answering/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation."""
17
18

import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import glob
20
21
22
import logging
import os
import random
Victor SANH's avatar
Victor SANH committed
23
import timeit
24
25
26

import numpy as np
import torch
Aymeric Augustin's avatar
Aymeric Augustin committed
27
28
import torch.nn as nn
import torch.nn.functional as F
29
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
30
from torch.utils.data.distributed import DistributedSampler
31
from tqdm import tqdm, trange
32

33
34
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    AdamW,
36
37
38
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
40
41
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
42
43
44
    RobertaConfig,
    RobertaForQuestionAnswering,
    RobertaTokenizer,
45
46
47
48
49
50
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    get_linear_schedule_with_warmup,
52
    squad_convert_examples_to_features,
53
)
54
55
56
57
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
58
)
59
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
Aymeric Augustin's avatar
Aymeric Augustin committed
60
61
62
63


try:
    from torch.utils.tensorboard import SummaryWriter
64
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
65
66
    from tensorboardX import SummaryWriter

67

68
69
70
71
logger = logging.getLogger(__name__)


MODEL_CLASSES = {
72
73
74
75
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
76
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
77
78
}

79

80
81
82
83
84
85
86
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

87

88
89
90
def to_list(tensor):
    return tensor.detach().cpu().tolist()

91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def train(args, train_dataset, model, tokenizer, teacher=None):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
108
    no_decay = ["bias", "LayerNorm.weight"]
109
    optimizer_grouped_parameters = [
110
111
112
113
114
115
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
116
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
117
118
119
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
120
121
122
123
124
125
126
127

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
Victor SANH's avatar
Victor SANH committed
128

Victor SANH's avatar
indents  
Victor SANH committed
129
    if args.fp16:
130
131
132
133
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
134

135
136
137
138
139
140
141
142
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
143
144
145
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
146
147
148
149
150
151

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
152
153
154
155
156
157
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
158
159
160
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

161
    global_step = 1
Victor SANH's avatar
indents  
Victor SANH committed
162
    epochs_trained = 0
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")

180
181
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
182
    train_iterator = trange(
Victor SANH's avatar
indents  
Victor SANH committed
183
184
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
185
    # Added here for reproductibility
Victor SANH's avatar
indents  
Victor SANH committed
186
    set_seed(args)
187

188
189
190
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
191
192
193
194
195
196

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

197
198
199
200
            model.train()
            if teacher is not None:
                teacher.eval()
            batch = tuple(t.to(args.device) for t in batch)
201

202
203
204
205
206
207
208
209
210
211
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4],
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
Victor SANH's avatar
indents  
Victor SANH committed
212
                if args.version_2_with_negative:
213
                    inputs.update({"is_impossible": batch[7]})
214
215
216
217
218
            outputs = model(**inputs)
            loss, start_logits_stu, end_logits_stu = outputs

            # Distillation loss
            if teacher is not None:
219
220
                if "token_type_ids" not in inputs:
                    inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2]
221
                with torch.no_grad():
222
223
224
225
226
                    start_logits_tea, end_logits_tea = teacher(
                        input_ids=inputs["input_ids"],
                        token_type_ids=inputs["token_type_ids"],
                        attention_mask=inputs["attention_mask"],
                    )
227
228
229
                assert start_logits_tea.size() == start_logits_stu.size()
                assert end_logits_tea.size() == end_logits_stu.size()

230
                loss_fct = nn.KLDivLoss(reduction="batchmean")
Lysandre's avatar
Lysandre committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
                loss_start = (
                    loss_fct(
                        F.log_softmax(start_logits_stu / args.temperature, dim=-1),
                        F.softmax(start_logits_tea / args.temperature, dim=-1),
                    )
                    * (args.temperature ** 2)
                )
                loss_end = (
                    loss_fct(
                        F.log_softmax(end_logits_stu / args.temperature, dim=-1),
                        F.softmax(end_logits_tea / args.temperature, dim=-1),
                    )
                    * (args.temperature ** 2)
                )
245
246
247
                loss_ce = (loss_start + loss_end) / 2.0

                loss = args.alpha_ce * loss_ce + args.alpha_squad * loss
248
249

            if args.n_gpu > 1:
250
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
251
252
253
254
255
256
257
258
259
260
261
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
262
263
264
265
266
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

267
268
269
270
271
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

Victor SANH's avatar
indents  
Victor SANH committed
272
                # Log metrics
273
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
274
275
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
276
277
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
278
279
280
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
281
282
283
284
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
285
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
286
287
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
288
289
290
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
291
                    model_to_save.save_pretrained(output_dir)
Victor SANH's avatar
indents  
Victor SANH committed
292
                    tokenizer.save_pretrained(output_dir)
293

294
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
295
296
                    logger.info("Saving model checkpoint to %s", output_dir)

297
298
299
300
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
321

322
    # Note that DistributedSampler samples randomly
323
    eval_sampler = SequentialSampler(dataset)
324
325
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

326
327
328
329
    # multi-gpu evaluate
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
        model = torch.nn.DataParallel(model)

330
331
332
333
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
334

335
    all_results = []
Victor SANH's avatar
indents  
Victor SANH committed
336
    start_time = timeit.default_timer()
337

338
339
340
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
341

342
        with torch.no_grad():
343
344
345
            inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]  # XLM don't use segment_ids
346
            example_indices = batch[3]
347
348
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
349

350
351
352
353
354
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

            output = [to_list(output[i]) for output in outputs]

            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
                end_top_index = output[3]
                cls_logits = output[4]

                result = SquadResult(
                    unique_id,
                    start_logits,
                    end_logits,
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
374
                )
375

376
            else:
377
378
379
                start_logits, end_logits = output
                result = SquadResult(unique_id, start_logits, end_logits)

380
381
            all_results.append(result)

382
383
384
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

385
386
387
    # Compute predictions
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
388

389
390
391
392
393
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None

394
    if args.model_type in ["xlnet", "xlm"]:
395
        # XLNet uses a more complex post-processing procedure
396
        predictions = compute_predictions_log_probs(
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            model.config.start_n_top,
            model.config.end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
411
    else:
412
        predictions = compute_predictions_logits(
413
414
415
416
417
418
419
420
421
422
423
424
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
425
            tokenizer,
426
        )
427

428
429
    # Compute the F1 and exact scores.
    results = squad_evaluate(examples, predictions)
430
431
432
433
434
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0] and not evaluate:
435
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
Victor SANH's avatar
indents  
Victor SANH committed
436
        torch.distributed.barrier()
437
438
439

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
440
441
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
442
        "cached_distillation_{}_{}_{}".format(
443
444
445
446
447
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
448
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
449
        logger.info("Loading features from cached file %s", cached_features_file)
450
451
452
453
454
455
456
457
458
459
460
461
462
        features_and_dataset = torch.load(cached_features_file)

        try:
            features, dataset, examples = (
                features_and_dataset["features"],
                features_and_dataset["dataset"],
                features_and_dataset["examples"],
            )
        except KeyError:
            raise DeprecationWarning(
                "You seem to be loading features from an older version of this script please delete the "
                "file %s in order for it to be created again" % cached_features_file
            )
463
464
    else:
        logger.info("Creating features from dataset file at %s", input_file)
465
466
        processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
        if evaluate:
467
            examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
468
        else:
469
            examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
470
471

        features, dataset = squad_convert_examples_to_features(
472
473
474
475
476
477
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
478
            return_dataset="pt",
Victor SANH's avatar
indents  
Victor SANH committed
479
            threads=args.threads,
480
        )
481

482
483
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
484
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
485
486

    if args.local_rank == 0 and not evaluate:
Victor SANH's avatar
indents  
Victor SANH committed
487
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
488
        torch.distributed.barrier()
489
490
491
492
493
494
495
496
497

    if output_examples:
        return dataset, examples, features
    return dataset


def main():
    parser = argparse.ArgumentParser()

498
    # Required parameters
499
500
501
502
503
504
505
506
507
508
509
510
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
511
        help="Path to pretrained model or model identifier from huggingface.co/models",
512
513
514
515
516
517
518
519
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
520
521

    # Distillation parameters (optional)
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    parser.add_argument(
        "--teacher_type",
        default=None,
        type=str,
        help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.",
    )
    parser.add_argument(
        "--teacher_name_or_path",
        default=None,
        type=str,
        help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.",
    )
    parser.add_argument(
        "--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
    )
543

544
    # Other parameters
545
546
547
548
549
550
551
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
Victor SANH's avatar
indents  
Victor SANH committed
552
    parser.add_argument(
553
        "--train_file",
Victor SANH's avatar
indents  
Victor SANH committed
554
555
556
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
557
558
559
560
561
562
563
564
565
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
634
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
698

Victor SANH's avatar
indents  
Victor SANH committed
699
    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
700
701
    args = parser.parse_args()

702
703
704
705
706
707
708
709
710
711
712
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
713
714
715
716
717

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
718

719
720
721
722
723
724
725
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
726
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
727
728
729
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
730
        torch.distributed.init_process_group(backend="nccl")
731
732
733
734
        args.n_gpu = 1
    args.device = device

    # Setup logging
735
736
737
738
739
740
741
742
743
744
745
746
747
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
748
749
750
751
752
753

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
Victor SANH's avatar
indents  
Victor SANH committed
754
        # Make sure only the first process in distributed training will download model & vocab
Victor SANH's avatar
Victor SANH committed
755
        torch.distributed.barrier()
756
757
758

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
774
775
776

    if args.teacher_type is not None:
        assert args.teacher_name_or_path is not None
777
778
779
        assert args.alpha_ce > 0.0
        assert args.alpha_ce + args.alpha_squad > 0.0
        assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT."
780
        teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
781
782
783
784
785
786
        teacher_config = teacher_config_class.from_pretrained(
            args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None
        )
        teacher = teacher_model_class.from_pretrained(
            args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None
        )
787
788
789
790
791
        teacher.to(args.device)
    else:
        teacher = None

    if args.local_rank == 0:
Victor SANH's avatar
indents  
Victor SANH committed
792
        # Make sure only the first process in distributed training will download model & vocab
793
        torch.distributed.barrier()
794
795
796
797
798

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

799
800
801
802
803
804
805
806
807
808
809
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex

            apex.amp.register_half_function(torch, "einsum")
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

810
811
812
813
814
815
816
817
818
819
820
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
821
822
823
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
824
825
826
827
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
828
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
829
830

        # Load a trained model and vocabulary that you have fine-tuned
831
832
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
833
834
835
836
837
        model.to(args.device)

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
838
839
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
840
841
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
842
843
844
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
845
846
847
848
849

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
850
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
851
            model = model_class.from_pretrained(checkpoint)
852
853
854
855
856
            model.to(args.device)

            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)

857
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
858
859
860
861
862
863
864
865
866
            results.update(result)

    logger.info("Results: {}".format(results))

    return results


if __name__ == "__main__":
    main()