run_squad_w_distillation.py 35.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" This is the exact same script as `examples/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation."""
17
18

import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import glob
20
21
22
import logging
import os
import random
Victor SANH's avatar
Victor SANH committed
23
import timeit
24
25
26

import numpy as np
import torch
Aymeric Augustin's avatar
Aymeric Augustin committed
27
28
import torch.nn as nn
import torch.nn.functional as F
29
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
30
from torch.utils.data.distributed import DistributedSampler
31
from tqdm import tqdm, trange
32

33
34
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    AdamW,
36
37
38
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
40
41
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
42
43
44
    RobertaConfig,
    RobertaForQuestionAnswering,
    RobertaTokenizer,
45
46
47
48
49
50
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    get_linear_schedule_with_warmup,
52
    squad_convert_examples_to_features,
53
)
54
55
56
57
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
58
)
59
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
Aymeric Augustin's avatar
Aymeric Augustin committed
60
61
62
63


try:
    from torch.utils.tensorboard import SummaryWriter
64
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
65
66
    from tensorboardX import SummaryWriter

67

68
69
logger = logging.getLogger(__name__)

70
71
72
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ()
)
73
74

MODEL_CLASSES = {
75
76
77
78
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
79
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
80
81
}

82

83
84
85
86
87
88
89
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

90

91
92
93
def to_list(tensor):
    return tensor.detach().cpu().tolist()

94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def train(args, train_dataset, model, tokenizer, teacher=None):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
111
    no_decay = ["bias", "LayerNorm.weight"]
112
    optimizer_grouped_parameters = [
113
114
115
116
117
118
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
119
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
120
121
122
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
123
124
125
126
127
128
129
130

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
Victor SANH's avatar
Victor SANH committed
131

Victor SANH's avatar
indents  
Victor SANH committed
132
    if args.fp16:
133
134
135
136
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
137

138
139
140
141
142
143
144
145
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
146
147
148
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
149
150
151
152
153
154

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
155
156
157
158
159
160
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
161
162
163
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

164
    global_step = 1
Victor SANH's avatar
indents  
Victor SANH committed
165
    epochs_trained = 0
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")

183
184
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
185
    train_iterator = trange(
Victor SANH's avatar
indents  
Victor SANH committed
186
187
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
188
    # Added here for reproductibility
Victor SANH's avatar
indents  
Victor SANH committed
189
    set_seed(args)
190

191
192
193
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
194
195
196
197
198
199

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

200
201
202
203
            model.train()
            if teacher is not None:
                teacher.eval()
            batch = tuple(t.to(args.device) for t in batch)
204

205
206
207
208
209
210
211
212
213
214
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4],
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
Victor SANH's avatar
indents  
Victor SANH committed
215
                if args.version_2_with_negative:
216
                    inputs.update({"is_impossible": batch[7]})
217
218
219
220
221
            outputs = model(**inputs)
            loss, start_logits_stu, end_logits_stu = outputs

            # Distillation loss
            if teacher is not None:
222
223
                if "token_type_ids" not in inputs:
                    inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2]
224
                with torch.no_grad():
225
226
227
228
229
                    start_logits_tea, end_logits_tea = teacher(
                        input_ids=inputs["input_ids"],
                        token_type_ids=inputs["token_type_ids"],
                        attention_mask=inputs["attention_mask"],
                    )
230
231
232
                assert start_logits_tea.size() == start_logits_stu.size()
                assert end_logits_tea.size() == end_logits_stu.size()

233
234
235
236
237
238
239
240
241
242
243
244
                loss_fct = nn.KLDivLoss(reduction="batchmean")
                loss_start = loss_fct(
                    F.log_softmax(start_logits_stu / args.temperature, dim=-1),
                    F.softmax(start_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature ** 2)
                loss_end = loss_fct(
                    F.log_softmax(end_logits_stu / args.temperature, dim=-1),
                    F.softmax(end_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature ** 2)
                loss_ce = (loss_start + loss_end) / 2.0

                loss = args.alpha_ce * loss_ce + args.alpha_squad * loss
245
246

            if args.n_gpu > 1:
247
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
248
249
250
251
252
253
254
255
256
257
258
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
259
260
261
262
263
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

264
265
266
267
268
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

Victor SANH's avatar
indents  
Victor SANH committed
269
                # Log metrics
270
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
271
272
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
273
274
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
275
276
277
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
278
279
280
281
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
282
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
283
284
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
285
286
287
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
288
                    model_to_save.save_pretrained(output_dir)
Victor SANH's avatar
indents  
Victor SANH committed
289
                    tokenizer.save_pretrained(output_dir)
290

291
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
292
293
                    logger.info("Saving model checkpoint to %s", output_dir)

294
295
296
297
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
318

319
    # Note that DistributedSampler samples randomly
320
    eval_sampler = SequentialSampler(dataset)
321
322
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

323
324
325
326
    # multi-gpu evaluate
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
        model = torch.nn.DataParallel(model)

327
328
329
330
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
331

332
    all_results = []
Victor SANH's avatar
indents  
Victor SANH committed
333
    start_time = timeit.default_timer()
334

335
336
337
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
338

339
        with torch.no_grad():
340
341
342
            inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]  # XLM don't use segment_ids
343
            example_indices = batch[3]
344
345
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
346

347
348
349
350
351
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

            output = [to_list(output[i]) for output in outputs]

            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
                end_top_index = output[3]
                cls_logits = output[4]

                result = SquadResult(
                    unique_id,
                    start_logits,
                    end_logits,
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
371
                )
372

373
            else:
374
375
376
                start_logits, end_logits = output
                result = SquadResult(unique_id, start_logits, end_logits)

377
378
            all_results.append(result)

379
380
381
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

382
383
384
    # Compute predictions
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
385

386
387
388
389
390
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None

391
    if args.model_type in ["xlnet", "xlm"]:
392
        # XLNet uses a more complex post-processing procedure
393
        predictions = compute_predictions_log_probs(
394
395
396
397
398
399
400
401
402
403
404
405
406
407
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            model.config.start_n_top,
            model.config.end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
408
    else:
409
        predictions = compute_predictions_logits(
410
411
412
413
414
415
416
417
418
419
420
421
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
422
            tokenizer,
423
        )
424

425
426
    # Compute the F1 and exact scores.
    results = squad_evaluate(examples, predictions)
427
428
429
430
431
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0] and not evaluate:
432
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
Victor SANH's avatar
indents  
Victor SANH committed
433
        torch.distributed.barrier()
434
435
436

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
437
438
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
439
        "cached_distillation_{}_{}_{}".format(
440
441
442
443
444
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
445
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
446
        logger.info("Loading features from cached file %s", cached_features_file)
447
448
449
450
451
452
453
454
455
456
457
458
459
        features_and_dataset = torch.load(cached_features_file)

        try:
            features, dataset, examples = (
                features_and_dataset["features"],
                features_and_dataset["dataset"],
                features_and_dataset["examples"],
            )
        except KeyError:
            raise DeprecationWarning(
                "You seem to be loading features from an older version of this script please delete the "
                "file %s in order for it to be created again" % cached_features_file
            )
460
461
    else:
        logger.info("Creating features from dataset file at %s", input_file)
462
463
        processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
        if evaluate:
464
            examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
465
        else:
466
            examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
467
468

        features, dataset = squad_convert_examples_to_features(
469
470
471
472
473
474
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
475
            return_dataset="pt",
Victor SANH's avatar
indents  
Victor SANH committed
476
            threads=args.threads,
477
        )
478

479
480
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
481
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
482
483

    if args.local_rank == 0 and not evaluate:
Victor SANH's avatar
indents  
Victor SANH committed
484
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
485
        torch.distributed.barrier()
486
487
488
489
490
491
492
493
494

    if output_examples:
        return dataset, examples, features
    return dataset


def main():
    parser = argparse.ArgumentParser()

495
    # Required parameters
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
517
518

    # Distillation parameters (optional)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    parser.add_argument(
        "--teacher_type",
        default=None,
        type=str,
        help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.",
    )
    parser.add_argument(
        "--teacher_name_or_path",
        default=None,
        type=str,
        help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.",
    )
    parser.add_argument(
        "--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
    )
540

541
    # Other parameters
542
543
544
545
546
547
548
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
Victor SANH's avatar
indents  
Victor SANH committed
549
    parser.add_argument(
550
        "--train_file",
Victor SANH's avatar
indents  
Victor SANH committed
551
552
553
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
554
555
556
557
558
559
560
561
562
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
631
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
695

Victor SANH's avatar
indents  
Victor SANH committed
696
    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
697
698
    args = parser.parse_args()

699
700
701
702
703
704
705
706
707
708
709
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
710
711
712
713
714

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
715

716
717
718
719
720
721
722
723
724
725
726
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
727
        torch.distributed.init_process_group(backend="nccl")
728
729
730
731
        args.n_gpu = 1
    args.device = device

    # Setup logging
732
733
734
735
736
737
738
739
740
741
742
743
744
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
745
746
747
748
749
750

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
Victor SANH's avatar
indents  
Victor SANH committed
751
        # Make sure only the first process in distributed training will download model & vocab
Victor SANH's avatar
Victor SANH committed
752
        torch.distributed.barrier()
753
754
755

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
771
772
773

    if args.teacher_type is not None:
        assert args.teacher_name_or_path is not None
774
775
776
        assert args.alpha_ce > 0.0
        assert args.alpha_ce + args.alpha_squad > 0.0
        assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT."
777
        teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
778
779
780
781
782
783
        teacher_config = teacher_config_class.from_pretrained(
            args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None
        )
        teacher = teacher_model_class.from_pretrained(
            args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None
        )
784
785
786
787
788
        teacher.to(args.device)
    else:
        teacher = None

    if args.local_rank == 0:
Victor SANH's avatar
indents  
Victor SANH committed
789
        # Make sure only the first process in distributed training will download model & vocab
790
        torch.distributed.barrier()
791
792
793
794
795

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

796
797
798
799
800
801
802
803
804
805
806
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex

            apex.amp.register_half_function(torch, "einsum")
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
822
823
824
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
825
826
827
828
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
829
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
830
831

        # Load a trained model and vocabulary that you have fine-tuned
832
833
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
834
835
836
837
838
        model.to(args.device)

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
839
840
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
841
842
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
843
844
845
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
846
847
848
849
850
851
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
852
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
853
            model = model_class.from_pretrained(checkpoint)
854
855
856
857
858
            model.to(args.device)

            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)

859
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
860
861
862
863
864
865
866
867
868
            results.update(result)

    logger.info("Results: {}".format(results))

    return results


if __name__ == "__main__":
    main()