run_swag.py 29.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""BERT finetuning runner.
   Finetuning the library models for multiple choice on SWAG (Bert).
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
19

20
21

import argparse
22
import csv
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
import glob
import logging
25
26
27
28
29
import os
import random

import numpy as np
import torch
30
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
31
from torch.utils.data.distributed import DistributedSampler
Aymeric Augustin's avatar
Aymeric Augustin committed
32
33
from tqdm import tqdm, trange

34
35
from transformers import WEIGHTS_NAME, AdamW, AutoConfig, AutoTokenizer, get_linear_schedule_with_warmup
from transformers.modeling_auto import AutoModelForMultipleChoice
Aymeric Augustin's avatar
Aymeric Augustin committed
36

37

38
39
try:
    from torch.utils.tensorboard import SummaryWriter
40
except ImportError:
41
42
    from tensorboardX import SummaryWriter

43
44
45

logger = logging.getLogger(__name__)

46

47
48
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
49
50

    def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
66
        attributes = [
67
68
69
70
71
72
73
74
75
76
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
        ]

        if self.label is not None:
77
            attributes.append("label: {}".format(self.label))
78

79
        return ", ".join(attributes)
80
81


82
83
class InputFeatures(object):
    def __init__(self, example_id, choices_features, label):
84
85
        self.example_id = example_id
        self.choices_features = [
86
            {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
87
88
89
90
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label

91

92
def read_swag_examples(input_file, is_training=True):
93
    with open(input_file, "r", encoding="utf-8") as f:
94
        lines = list(csv.reader(f))
95

96
97
    if is_training and lines[0][-1] != "label":
        raise ValueError("For training, the input file must contain a label column.")
98
99
100

    examples = [
        SwagExample(
101
102
103
104
105
106
107
108
109
110
111
112
            swag_id=line[2],
            context_sentence=line[4],
            start_ending=line[5],  # in the swag dataset, the
            # common beginning of each
            # choice is stored in "sent2".
            ending_0=line[7],
            ending_1=line[8],
            ending_2=line[9],
            ending_3=line[10],
            label=int(line[11]) if is_training else None,
        )
        for line in lines[1:]  # we skip the line with the column names
113
114
115
116
    ]

    return examples

117
118

def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
138
    for example_index, example in tqdm(enumerate(examples)):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
            logger.info("swag_id: {}".format(example.swag_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
178
179
180
181
                logger.info("tokens: {}".format(" ".join(tokens)))
                logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
                logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
182
183
184
            if is_training:
                logger.info("label: {}".format(label))

185
        features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
186
187
188

    return features

189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

206

207
208
209
210
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

211

212
def select_field(features, field):
213
    return [[choice[field] for choice in feature.choices_features] for feature in features]
214

215
216
217
218
219
220
221
222

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

223

224
225
226
227
228
229
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
230
231
232
233
234
235
236
237
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
238
239
240
241
242
243
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_swag_examples(input_file)
244
        features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
245
246
247
248
249
250
251
252
253

        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
254
255
256
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
257
258
259
    all_label = torch.tensor([f.label for f in features], dtype=torch.long)

    if evaluate:
260
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
261
    else:
262
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
263
264
265
266

    if output_examples:
        return dataset, examples, features
    return dataset
267
268


269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
285
    no_decay = ["bias", "LayerNorm.weight"]
286
    optimizer_grouped_parameters = [
287
288
289
290
291
292
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
293
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
294
295
296
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
297
298
299
300
301
302
303
304
305
306
307
308
309
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
310
311
312
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
313
314
315
316
317
318

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
319
320
321
322
323
324
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
325
326
327
328
329
330
331
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
332
    set_seed(args)  # Added here for reproductibility
333
334
335
336
337
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
338
339
340
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
341
                # 'token_type_ids':  None if args.model_type == 'xlm' else batch[2],
342
343
344
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
345
346
347
348
            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[5],
            #                    'p_mask':       batch[6]})
            outputs = model(**inputs)
349
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
350
351

            if args.n_gpu > 1:
352
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
373
374
375
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
376
377
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
378
379
380
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
381
382
383
384
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
385
386
387
388
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
389
390
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
391
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
392
393
394
395
396
397
398
399
400
401
402
403
404
405
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step

406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
430
431
432
433
434
435
436
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                # 'token_type_ids': None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
437
438
439
440
441
442
443
444
445

            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[4],
            #                    'p_mask':    batch[5]})
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            eval_loss += tmp_eval_loss.mean().item()

        logits = logits.detach().cpu().numpy()
446
        label_ids = inputs["labels"].to("cpu").numpy()
447
448
449
450
        tmp_eval_accuracy = accuracy(logits, label_ids)
        eval_accuracy += tmp_eval_accuracy

        nb_eval_steps += 1
451
        nb_eval_examples += inputs["input_ids"].size(0)
452
453
454

    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_examples
455
    result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
456
457
458
459
460
461
462
463
464
465

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("%s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result

466

467
468
469
def main():
    parser = argparse.ArgumentParser()

470
    # Required parameters
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SWAG csv for predictions. E.g., val.csv or test.csv",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
486
        help="Path to pretrained model or model identifier from huggingface.co/models",
487
488
489
490
491
492
493
494
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
495

496
    # Other parameters
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
575
576
    args = parser.parse_args()

577
578
579
580
581
582
583
584
585
586
587
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
588
589
590
591
592

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
593

594
595
596
597
598
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
599
600
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
601
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
602
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
603
604
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
605
        torch.distributed.init_process_group(backend="nccl")
606
607
        args.n_gpu = 1
    args.device = device
608

609
    # Setup logging
610
611
612
613
614
615
616
617
618
619
620
621
622
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
623

624
625
    # Set seed
    set_seed(args)
626

627
628
629
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
630

631
    config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
Lysandre's avatar
Lysandre committed
632
633
634
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
    )
635
    model = AutoModelForMultipleChoice.from_pretrained(
636
637
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )
638

639
640
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
641

642
    model.to(args.device)
643

644
    logger.info("Training/evaluation parameters %s", args)
645

646
    # Training
647
    if args.do_train:
648
649
650
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
651

652
653
654
655
656
    # Save the trained model and the tokenizer
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
657
658
659
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
660
661
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
662

663
        # Good practice: save your training arguments together with the trained model
664
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
665
666

        # Load a trained model and vocabulary that you have fine-tuned
667
668
        model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
669
        model.to(args.device)
670

671
672
673
674
675
676
677
678
679
680
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            checkpoints = [args.output_dir]
        else:
            # if do_train is False and do_eval is true, load model directly from pretrained.
            checkpoints = [args.model_name_or_path]

        if args.eval_all_checkpoints:
681
682
683
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
684
685
686
687
688

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
689
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
690
691
            model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
692
            model.to(args.device)
693

694
695
            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)
696

697
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
698
            results.update(result)
699

700
    logger.info("Results: {}".format(results))
701

702
    return results
703
704
705
706


if __name__ == "__main__":
    main()