glue.py 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" GLUE processors and helpers """
17
18
19
20

import logging
import os

thomwolf's avatar
thomwolf committed
21
from .utils import DataProcessor, InputExample, InputFeatures
thomwolf's avatar
thomwolf committed
22
23
24
25
from ...file_utils import is_tf_available

if is_tf_available():
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
26

27
28
logger = logging.getLogger(__name__)

29

thomwolf's avatar
thomwolf committed
30
31
32
33
34
def glue_convert_examples_to_features(examples, tokenizer,
                                      max_length=512,
                                      task=None,
                                      label_list=None,
                                      output_mode=None,
35
36
37
38
39
                                      pad_on_left=False,
                                      pad_token=0,
                                      pad_token_segment_id=0,
                                      mask_padding_with_zero=True):
    """
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    Loads a data file into a list of ``InputFeatures``

    Args:
        examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples.
        tokenizer: Instance of a tokenizer that will tokenize the examples
        max_length: Maximum example length
        task: GLUE task
        label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method
        output_mode: String indicating the output mode. Either ``regression`` or ``classification``
        pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default)
        pad_token: Padding token
        pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4)
        mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values
            and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for
            actual values)

    Returns:
        If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset``
        containing the task-specific features. If the input is a list of ``InputExamples``, will return
        a list of task-specific ``InputFeatures`` which can be fed to the model.

61
    """
thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
69
70
71
72
73
    is_tf_dataset = False
    if is_tf_available() and isinstance(examples, tf.data.Dataset):
        is_tf_dataset = True

    if task is not None:
        processor = glue_processors[task]()
        if label_list is None:
            label_list = processor.get_labels()
            logger.info("Using label list %s for task %s" % (label_list, task))
        if output_mode is None:
            output_mode = glue_output_modes[task]
            logger.info("Using output mode %s for task %s" % (output_mode, task))
74
75
76
77
78
79

    label_map = {label: i for i, label in enumerate(label_list)}

    features = []
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
thomwolf's avatar
thomwolf committed
80
81
            logger.info("Writing example %d" % (ex_index))
        if is_tf_dataset:
82
            example = processor.get_example_from_tensor_dict(example)
83
84
85
86
87

        inputs = tokenizer.encode_plus(
            example.text_a,
            example.text_b,
            add_special_tokens=True,
thomwolf's avatar
thomwolf committed
88
            max_length=max_length,
89
        )
thomwolf's avatar
thomwolf committed
90
        input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
91
92
93

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
thomwolf's avatar
thomwolf committed
94
        attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
95
96

        # Zero-pad up to the sequence length.
thomwolf's avatar
thomwolf committed
97
        padding_length = max_length - len(input_ids)
98
99
        if pad_on_left:
            input_ids = ([pad_token] * padding_length) + input_ids
thomwolf's avatar
thomwolf committed
100
101
            attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
            token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids
102
103
        else:
            input_ids = input_ids + ([pad_token] * padding_length)
thomwolf's avatar
thomwolf committed
104
105
            attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
            token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
106

thomwolf's avatar
thomwolf committed
107
108
109
        assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length)
        assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length)
        assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length)
110
111

        if output_mode == "classification":
thomwolf's avatar
thomwolf committed
112
            label = label_map[example.label]
113
        elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
114
            label = float(example.label)
115
116
117
118
119
120
121
        else:
            raise KeyError(output_mode)

        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
thomwolf's avatar
thomwolf committed
122
123
124
            logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
            logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label))
125
126
127

        features.append(
                InputFeatures(input_ids=input_ids,
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                              attention_mask=attention_mask,
                              token_type_ids=token_type_ids,
                              label=label))

    if is_tf_available() and is_tf_dataset:
        def gen():
            for ex in features:
                yield  ({'input_ids': ex.input_ids,
                         'attention_mask': ex.attention_mask,
                         'token_type_ids': ex.token_type_ids},
                        ex.label)

        return tf.data.Dataset.from_generator(gen,
            ({'input_ids': tf.int32,
              'attention_mask': tf.int32,
              'token_type_ids': tf.int32},
             tf.int64),
            ({'input_ids': tf.TensorShape([None]),
              'attention_mask': tf.TensorShape([None]),
              'token_type_ids': tf.TensorShape([None])},
             tf.TensorShape([])))

150
151
152
    return features


153
154
155
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

156
    def get_example_from_tensor_dict(self, tensor_dict):
157
        """See base class."""
158
159
160
161
162
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence1'].numpy().decode('utf-8'),
                            tensor_dict['sentence2'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def get_train_examples(self, data_dir):
        """See base class."""
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = line[3]
            text_b = line[4]
            label = line[0]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

196
    def get_example_from_tensor_dict(self, tensor_dict):
197
        """See base class."""
198
199
200
201
202
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['premise'].numpy().decode('utf-8'),
                            tensor_dict['hypothesis'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[8]
            text_b = line[9]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class MnliMismatchedProcessor(MnliProcessor):
    """Processor for the MultiNLI Mismatched data set (GLUE version)."""

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
            "dev_matched")


class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

246
    def get_example_from_tensor_dict(self, tensor_dict):
247
        """See base class."""
248
249
250
251
252
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence'].numpy().decode('utf-8'),
                            None,
                            str(tensor_dict['label'].numpy()))

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
            text_a = line[3]
            label = line[1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


class Sst2Processor(DataProcessor):
    """Processor for the SST-2 data set (GLUE version)."""

282
    def get_example_from_tensor_dict(self, tensor_dict):
283
        """See base class."""
284
285
286
287
288
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence'].numpy().decode('utf-8'),
                            None,
                            str(tensor_dict['label'].numpy()))

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
            text_a = line[0]
            label = line[1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples


class StsbProcessor(DataProcessor):
    """Processor for the STS-B data set (GLUE version)."""

320
    def get_example_from_tensor_dict(self, tensor_dict):
321
        """See base class."""
322
323
324
325
326
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence1'].numpy().decode('utf-8'),
                            tensor_dict['sentence2'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return [None]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[7]
            text_b = line[8]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QqpProcessor(DataProcessor):
    """Processor for the QQP data set (GLUE version)."""

359
    def get_example_from_tensor_dict(self, tensor_dict):
360
        """See base class."""
361
362
363
364
365
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['question1'].numpy().decode('utf-8'),
                            tensor_dict['question2'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            try:
                text_a = line[3]
                text_b = line[4]
                label = line[5]
            except IndexError:
                continue
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class QnliProcessor(DataProcessor):
    """Processor for the QNLI data set (GLUE version)."""

401
    def get_example_from_tensor_dict(self, tensor_dict):
402
        """See base class."""
403
404
405
406
407
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['question'].numpy().decode('utf-8'),
                            tensor_dict['sentence'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

408
409
410
411
412
413
414
415
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
416
            self._read_tsv(os.path.join(data_dir, "dev.tsv")),
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class RteProcessor(DataProcessor):
    """Processor for the RTE data set (GLUE version)."""

441
    def get_example_from_tensor_dict(self, tensor_dict):
442
        """See base class."""
443
444
445
446
447
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence1'].numpy().decode('utf-8'),
                            tensor_dict['sentence2'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["entailment", "not_entailment"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples


class WnliProcessor(DataProcessor):
    """Processor for the WNLI data set (GLUE version)."""

480
    def get_example_from_tensor_dict(self, tensor_dict):
481
        """See base class."""
482
483
484
485
486
        return InputExample(tensor_dict['idx'].numpy(),
                            tensor_dict['sentence1'].numpy().decode('utf-8'),
                            tensor_dict['sentence2'].numpy().decode('utf-8'),
                            str(tensor_dict['label'].numpy()))

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[1]
            text_b = line[2]
            label = line[-1]
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

glue_tasks_num_labels = {
    "cola": 2,
    "mnli": 3,
    "mrpc": 2,
    "sst-2": 2,
    "sts-b": 1,
    "qqp": 2,
    "qnli": 2,
    "rte": 2,
    "wnli": 2,
}

glue_processors = {
    "cola": ColaProcessor,
    "mnli": MnliProcessor,
    "mnli-mm": MnliMismatchedProcessor,
    "mrpc": MrpcProcessor,
    "sst-2": Sst2Processor,
    "sts-b": StsbProcessor,
    "qqp": QqpProcessor,
    "qnli": QnliProcessor,
    "rte": RteProcessor,
    "wnli": WnliProcessor,
}

glue_output_modes = {
    "cola": "classification",
    "mnli": "classification",
    "mnli-mm": "classification",
    "mrpc": "classification",
    "sst-2": "classification",
    "sts-b": "regression",
    "qqp": "classification",
    "qnli": "classification",
    "rte": "classification",
    "wnli": "classification",
}