Commit 99a90e43 authored by thomwolf's avatar thomwolf
Browse files

update data processors __init__

parent b5ec526f
......@@ -76,7 +76,7 @@ from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CAC
from .data import (is_sklearn_available,
InputExample, InputFeatures, DataProcessor,
glue_output_modes, glue_convert_examples_to_features, glue_processors)
glue_output_modes, glue_convert_examples_to_features, glue_processors, glue_tasks_num_labels)
if is_sklearn_available():
from .data import glue_compute_metrics
from .processors import (InputExample, InputFeatures, DataProcessor,
glue_output_modes, glue_convert_examples_to_features, glue_processors)
from .metrics import is_sklearn_available
from .processors import InputExample, InputFeatures, DataProcessor
from .processors import glue_output_modes, glue_processors, glue_tasks_num_labels, glue_convert_examples_to_features
from .metrics import is_sklearn_available
if is_sklearn_available():
from .metrics import glue_compute_metrics
from .utils import InputExample, InputFeatures, DataProcessor
from .glue import output_modes, processors, convert_examples_to_glue_features
from .glue import glue_output_modes, glue_processors, glue_tasks_num_labels, glue_convert_examples_to_features
......@@ -22,45 +22,7 @@ from .utils import DataProcessor, InputExample, InputFeatures
logger = logging.getLogger(__name__)
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
}
def convert_examples_to_glue_features(examples, label_list, max_seq_length,
def glue_convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer, output_mode,
pad_on_left=False,
pad_token=0,
......@@ -427,3 +389,41 @@ class WnliProcessor(DataProcessor):
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
glue_tasks_num_labels = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
glue_processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
glue_output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment